ブログ

Pythonを用いた推測統計のプログラミング 〜区間推定、仮説検定 etc〜

数式だけの解説ではわかりにくい場合もあると思われるので、統計学の手法や関連する概念をPythonのプログラミングで表現を行います。当記事では統計的推測(statistical inference)の理解にあたって、区間推定や仮説検定のPythonでの実装を取り扱いました。

・Pythonを用いた統計学のプログラミングまとめ
https://www.hello-statisticians.com/stat_program

基本事項の確認

区間推定

下記で詳しく取り扱った。
https://www.hello-statisticians.com/explain-terms-cat/flow_chart_stat1.html

仮説検定

推測統計でよく用いるSciPyのメソッド

SciPyの使用にあたっては、scipy.stats.xxx.oooのように使用するメソッドの指定を行うが、xxxに確率分布、oooに行う処理を指定する。

推測統計ではxxxに対して主に下記などの確率分布の指定を行う。

norm: 正規分布
t: $t$分布
chi2: $\chi^2$分布

同様に推測統計ではoooに対して、主に下記の処理の指定を行う。

cdf: 統計量から有意水準・$P$値の計算
ppf: 有意水準・$P$値から統計量の計算
pdf: 統計量から確率密度関数の計算

特にcdfppfは区間推定や検定で統計数値表の代わりに用いることができる。

以下、標準正規分布を例にcdfppfpdfの概要の確認を行う。

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

x = np.arange(-3.,3.01,0.01)
f_pdf = stats.norm.pdf(x)
F_cdf = stats.norm.cdf(x)

plt.plot(x,f_pdf,label="pdf")
plt.plot(x,F_cdf,label="cdf")

plt.legend()
plt.show()

・実行結果

上記のようにcdfpdfを用いることで累積分布関数と確率密度関数の描画を行うことができる。

次に、cdfppfの対応に関して確認を行う。

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

alpha = np.array([0.1, 0.05, 0.025, 0.01, 0.005])
x = np.arange(-3.,3.01,0.01)
F_cdf = stats.norm.cdf(x)

plt.plot(x,F_cdf,label="cdf")
for i in range(alpha.shape[0]):
    print("alpha: {}, statistic_upper: {:.2f}".format(alpha[i], stats.norm.ppf(1.-alpha[i])))
    x_upper = np.repeat(stats.norm.ppf(1.-alpha[i]), 100)
    y = np.linspace(0,1.-alpha[i],100)
    plt.plot(x_upper,y,label="alpha: {}".format(alpha[i]))

plt.legend(loc=2)
plt.show()

・実行結果

alpha: 0.1, statistic_upper: 1.28
alpha: 0.05, statistic_upper: 1.64
alpha: 0.025, statistic_upper: 1.96
alpha: 0.01, statistic_upper: 2.33
alpha: 0.005, statistic_upper: 2.58

上記よりcdfppfは逆関数であると考えることができる。それぞれの対応がわかりやすいように、下記では上図の編集を行った。

統計数値表とSciPyを用いた代用

scipy.statsscipy.stats.normscipy.stats.tscipy.stats.chi2を用いることで、統計的推測を行うことができる。特に区間推定や仮説検定でよく用いられる統計数値表が、累積分布関数に対応するscipy.stats.norm.cdfなどを活用することで作成できることは抑えておくと良い。

以下ではscipy.stats.norm.cdfscipy.stats.norm.ppfなどを用いることで統計数値表を作成し概要の理解を行うことに加えて、SciPyで代用する際の用い方について確認を行う。

標準正規分布

統計数値表の作成

上側確率が$100 \alpha’$%となる点を$z_{\alpha=\alpha’}$とおくとき、$z_{\alpha=\alpha’}=0$から$0.01$刻みで該当する$\alpha’$の値を表形式で表したものが統計数値表である。以下、$500$個の値を$50$行$10$列に並べることで標準正規分布の統計数値表の作成を行う。

import numpy as np
from scipy import stats

z = np.arange(0., 5., 0.01).reshape([50,10])
table_norm = 1. - stats.norm.cdf(z)

print(table_norm)

・実行結果

array([[  5.00000000e-01,   4.96010644e-01,   4.92021686e-01,
          4.88033527e-01,   4.84046563e-01,   4.80061194e-01,
          4.76077817e-01,   4.72096830e-01,   4.68118628e-01,
          4.64143607e-01],
       [  4.60172163e-01,   4.56204687e-01,   4.52241574e-01,
          4.48283213e-01,   4.44329995e-01,   4.40382308e-01,
          4.36440537e-01,   4.32505068e-01,   4.28576284e-01,
          4.24654565e-01],
.....
[  4.79183277e-07,   4.55381965e-07,   4.32721062e-07,
          4.11148084e-07,   3.90612854e-07,   3.71067408e-07,
          3.52465898e-07,   3.34764508e-07,   3.17921366e-07,
          3.01896462e-07]])

処理の理解にあたっては、上側確率であることから1. - stats.norm.cdf(z)のように$1$から引いたと考えると良い。

SciPyを用いた統計数値表の代用

・有意水準$\alpha$から標準化変量$Z$を導出

有意水準$\alpha$から標準化変量$Z$を導出する場合はscipy.stats.norm.ppfを用いればよい。

import numpy as np
from scipy import stats

alpha = np.array([0.1, 0.05, 0.025, 0.01, 0.005])
Z_Limit = stats.norm.ppf(1.-alpha)

print(Z_Limit)

・実行結果

> print(Z_Limit)
array([ 1.28155157,  1.64485363,  1.95996398,  2.32634787,  2.5758293 ])

標準化変量$Z$から有意水準$\alpha$を導出

標準化変量$Z$から有意水準$\alpha$を導出する場合は、統計数値表の作成と同様にscipy.stats.norm.cdfを用いればよい。

import numpy as np
from scipy import stats

Z = np.array([0., 0.5, 1., 1.5, 2., 2.5, 3.])
alpha = 1.-stats.norm.cdf(Z)

print(alpha)

・実行結果

> print(alpha)
[ 0.5         0.30853754  0.15865525  0.0668072   0.02275013  0.00620967
  0.0013499 ]

$t$分布

統計数値表の作成

自由度が$\nu$の$t$分布$t(\nu)$に関して、上側確率が$100 \alpha’$%となる点を$t_{\alpha=\alpha’}(\nu)$とおくとき、$\alpha’=\{0.25, 0.20, 0.15, 0.10, 0.05, 0.025, 0.01, 0.005, 0.001\}$に対して、$\nu$を変化させたときに$t_{\alpha=\alpha’}(\nu)$の値をまとめたものが$t$分布の統計数値表である。以下、それぞれの有意水準と自由度に対して$t$分布の統計数値表の作成を行う。

import numpy as np
from scipy import stats

alpha = np.array([0.25, 0.20, 0.15, 0.10, 0.05, 0.025, 0.01, 0.005, 0.0005])
nu = np.arange(1,56,1)
nu[50:] = np.array([60., 80., 120., 240., 100000])

table_t = np.zeros([nu.shape[0],alpha.shape[0]])
for i in range(nu.shape[0]):
    table_t[i,:] = stats.t.ppf(1.-alpha,nu[i])

print(table_t)

・実行結果

[[   1.            1.37638192    1.96261051    3.07768354    6.31375151
    12.70620474   31.82051595   63.65674116  636.61924943]
 [   0.81649658    1.06066017    1.38620656    1.88561808    2.91998558
     4.30265273    6.96455672    9.9248432    31.59905458]
 [   0.76489233    0.97847231    1.2497781     1.63774436    2.35336343
     3.18244631    4.54070286    5.8409093    12.92397864]
.....
 [   0.67551336    0.84312147    1.0386776     1.28508893    1.65122739
     1.96989764    2.34198547    2.59646918    3.33152484]
 [   0.6744922     0.84162483    1.03643876    1.28156003    1.64486886
     1.95998771    2.32638517    2.57587847    3.29062403]]

処理の理解にあたっては、上側確率であることから1. - alphaのように$1$から引いたと考えると良い。

SciPyを用いた統計数値表の代用

・有意水準$\alpha$からパーセント点$t_{\alpha=\alpha’}(\nu)$を導出

有意水準$\alpha$からパーセント点$t_{\alpha=\alpha’}(\nu)$を導出する場合は統計数値表の作成と同様にscipy.stats.t.ppfを用いればよい。

import numpy as np
from scipy import stats

alpha = np.array([0.1, 0.05, 0.025, 0.01, 0.005])
Z_Limit = stats.norm.ppf(1.-alpha)
t_Limit_20 = stats.t.ppf(1.-alpha, 20)
t_Limit_100 = stats.t.ppf(1.-alpha, 100)

print(Z_Limit)
print(t_Limit_20)
print(t_Limit_100)

・実行結果

> print(Z_Limit)
[ 1.28155157  1.64485363  1.95996398  2.32634787  2.5758293 ]
> print(t_Limit_20)
[ 1.32534071  1.72471824  2.08596345  2.527977    2.84533971]
> print(t_Limit_100)
[ 1.29007476  1.66023433  1.98397152  2.36421737  2.62589052]

上記より、$t$分布の棄却点は標準正規分布の棄却点より絶対値が大きくなることが確認できる。また、t_Limit_20t_Limit_100の比較により、自由度が大きくなるにつれて$t$分布が標準正規分布に近づくことも確認できる。

・パーセント点$t_{\alpha=\alpha’}(\nu)$から有意水準$\alpha$を導出

統計量$t$から有意水準$\alpha$を導出する場合は、scipy.stats.t.cdfを用いればよい。

import numpy as np
from scipy import stats

t = np.array([0., 0.5, 1., 1.5, 2., 2.5, 3.])
alpha_20 = 1.-stats.t.cdf(t,20)
alpha_100 = 1.-stats.t.cdf(t,100)

print(alpha_20)
print(alpha_100)

・実行結果

> print(alpha_20)
[ 0.5         0.31126592  0.16462829  0.07461789  0.02963277  0.01061677
  0.00353795]
> print(alpha_100)
[ 0.5         0.30908678  0.15986208  0.06838253  0.02410609  0.00702289
  0.00170396]

$\chi^2$分布

統計数値表の作成

自由度が$\nu$の$\chi^2$分布$\chi^2(\nu)$に関して、上側確率が$100 \alpha’$%となる点を$\chi^2_{\alpha=\alpha’}(\nu)$とおくとき、$\alpha’=\{0.995, 0.990, 0.975, 0.950, 0.900, 0.800, …, 0.100, 0.050, 0.025, 0.010, 0.005, 0.001\}$に対して、$\nu$を変化させたときに$t_{\alpha=\alpha’}(\nu)$の値をまとめたものが「基礎統計学Ⅰ」における$\chi^2$分布の統計数値表である。以下、それぞれの有意水準と自由度に対して$\chi^2$分布の統計数値表の作成を行う。

import numpy as np
from scipy import stats

alpha = np.array([0.995, 0.990, 0.975, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.025, 0.01, 0.005, 0.001])
nu = np.arange(1,62,1)
nu[50:] = np.array([60., 70., 80., 90., 100., 120., 140., 160., 180., 200., 240.])

table_chi2 = np.zeros([nu.shape[0],alpha.shape[0]])
for i in range(nu.shape[0]):
    table_chi2[i,:] = stats.chi2.ppf(1.-alpha,nu[i])

print(table_chi2)

・実行結果

[[  3.92704222e-05   1.57087858e-04   9.82069117e-04 ...,   6.63489660e+00
    7.87943858e+00   1.08275662e+01]
 [  1.00250836e-02   2.01006717e-02   5.06356160e-02 ...,   9.21034037e+00
    1.05966347e+01   1.38155106e+01]
 [  7.17217746e-02   1.14831802e-01   2.15795283e-01 ...,   1.13448667e+01
    1.28381565e+01   1.62662362e+01]
.....
 [  1.52240992e+02   1.56431966e+02   1.62727983e+02 ...,   2.49445123e+02
    2.55264155e+02   2.67540528e+02]
 [  1.87324255e+02   1.91989896e+02   1.98983851e+02 ...,   2.93888101e+02
    3.00182237e+02   3.13436899e+02]]

SciPyを用いた統計数値表の代用

・有意水準$\alpha$からパーセント点$\chi^2_{\alpha=\alpha’}(\nu)$を導出

有意水準$\alpha$からパーセント点$\chi^2_{\alpha=\alpha’}(\nu)$を導出する場合は統計数値表の作成と同様にscipy.stats.chi2.ppfを用いればよい。

import numpy as np
from scipy import stats

alpha = np.array([0.975, 0.95, 0.1, 0.05, 0.025])
chi2_Limit_1 = stats.chi2.ppf(1.-alpha, 1)
chi2_Limit_10 = stats.chi2.ppf(1.-alpha, 10)
chi2_Limit_100 = stats.chi2.ppf(1.-alpha, 100)

print(chi2_Limit_1)
print(chi2_Limit_10)
print(chi2_Limit_100)

・実行結果

print(chi2_Limit_1)
[  9.82069117e-04   3.93214000e-03   2.70554345e+00   3.84145882e+00
   5.02388619e+00]
print(chi2_Limit_10)
[  3.24697278   3.94029914  15.98717917  18.30703805  20.48317735]
print(chi2_Limit_100)
[  74.22192747   77.92946517  118.49800381  124.3421134   129.56119719]

・パーセント点$\chi^2_{\alpha=\alpha’}(\nu)$から有意水準$\alpha$を導出

統計量$\chi^2$から有意水準$\alpha$を導出する場合は、scipy.stats.chi2.cdfを用いればよい。

import numpy as np
from scipy import stats

chi2 = np.array([2., 5., 10., 15., 20., 50., 100.])

alpha_1 = 1.-stats.chi2.cdf(chi2,1)
alpha_5 = 1.-stats.chi2.cdf(chi2,5)
alpha_10 = 1.-stats.chi2.cdf(chi2,10)
alpha_20 = 1.-stats.chi2.cdf(chi2,20)
alpha_100 = 1.-stats.chi2.cdf(chi2,100)

print(alpha_1)
print(alpha_5)
print(alpha_10)
print(alpha_20)
print(alpha_100)

・実行結果

> print(alpha_1)
[  1.57299207e-01   2.53473187e-02   1.56540226e-03   1.07511177e-04
   7.74421643e-06   1.53743684e-12   0.00000000e+00]
> print(alpha_5)
[  8.49145036e-01   4.15880187e-01   7.52352461e-02   1.03623379e-02
   1.24973056e-03   1.38579737e-09   0.00000000e+00]
> print(alpha_10)
[  9.96340153e-01   8.91178019e-01   4.40493285e-01   1.32061856e-01
   2.92526881e-02   2.66908343e-07   0.00000000e+00]
> print(alpha_20)
[  9.99999889e-01   9.99722648e-01   9.68171943e-01   7.76407613e-01
   4.57929714e-01   2.21476638e-04   1.25965904e-12]
> print(alpha_100)
[ 1.          1.          1.          1.          1.          0.99999305
  0.48119168]

区間推定・仮説検定

母分散既知の場合の母平均

区間推定

$$
\large
\begin{align}
\bar{x}-1.96\frac{\sigma}{\sqrt{n}} \leq &\mu \leq \bar{x}+1.96\frac{\sigma}{\sqrt{n}}
\end{align}
$$
母平均の$95$%区間推定は上記のように表される。以下、上記を元に具体的な例に対して計算を行う。

import numpy as np
from scipy import stats

sigma = 1.
x = np.array([1.2, 1.5, 0.9, 0.7, 1.1])
ave_x = np.mean(x)

Lower_mu = ave_x + stats.norm.ppf(0.025)*sigma/np.sqrt(x.shape[0])
Upper_mu = ave_x + stats.norm.ppf(0.975)*sigma/np.sqrt(x.shape[0])

print("Estimated mu-interval: [{:.3f}, {:.3f}]".format(Lower_mu, Upper_mu))

・実行結果

> print("Estimated mu-interval: [{:.3f}, {:.3f}]".format(Lower_mu, Upper_mu))
Estimated mu-interval: [0.203, 1.957]

以下、$\sigma$の値を変化させた際の区間推定の結果の確認を行う。

import numpy as np
from scipy import stats

sigma = np.array([0.1, 0.25, 0.5, 1., 2.])
x = np.array([1.2, 1.5, 0.9, 0.7, 1.1])
ave_x = np.mean(x)

Lower_mu = ave_x + stats.norm.ppf(0.025)*sigma/np.sqrt(x.shape[0])
Upper_mu = ave_x + stats.norm.ppf(0.975)*sigma/np.sqrt(x.shape[0])

for i in range(sigma.shape[0]):
    print("Estimated mu-interval: [{:.3f}, {:.3f}]".format(Lower_mu[i], Upper_mu[i]))

・実行結果

Estimated mu-interval: [0.992, 1.168]
Estimated mu-interval: [0.861, 1.299]
Estimated mu-interval: [0.642, 1.518]
Estimated mu-interval: [0.203, 1.957]
Estimated mu-interval: [-0.673, 2.833]

Lower_muUpper_muの計算にあたって、それぞれ0.0250.975を引数に設定したが、これは上側確率を$\alpha’$とおく際の$1-\alpha’$に対応し、このように考えると少々わかりにくい。そのため、標準正規分布の累積分布関数の値から変数の値を計算すると考える方が良い。

これらの違いは元々が「統計数値表」に基づいて考えていた一方で、SciPyなどで実装を行う際には「数値表」が必要ないことからより関数的な表し方に変わったのではないかと考えられる。

SciPyでの表し方がより自然に思われるので、表よりもSciPyなどを用いた形式で理解する方がわかりやすいかもしれない。

仮説検定① 〜norm.ppfと区間推定の活用〜

前項のxave_xに対し、帰無仮説を$H_0: \mu=0$と設定し、上側確率$\alpha’=\{0.05, 0.025, 0.005\}$を用いた仮説検定を行う。
$$
\large
\begin{align}
z_{\alpha=1-\alpha’} \leq &\frac{\bar{x}-\mu}{\sigma/\sqrt{n}} \leq z_{\alpha=\alpha’} \\
-z_{\alpha=\alpha’} \leq &\frac{\sqrt{n}}{\sigma}\bar{x} \leq z_{\alpha=\alpha’}
\end{align}
$$
ここでの検定統計量の$\displaystyle Z = \frac{\sqrt{n}}{\sigma}\bar{x}$に関して上記が成立しなければ$H_0$を棄却し、対立仮説の$H_1: \mu \neq 0$を採択する。

import numpy as np
from scipy import stats

alpha = np.array([0.05, 0.025, 0.005])
sigma = 1.
x = np.array([1.2, 1.5, 0.9, 0.7, 1.1])
Z_observed = np.sqrt(x.shape[0])*np.mean(x)/sigma

Lower_Z = -stats.norm.ppf(1.-alpha)*sigma
Upper_Z = stats.norm.ppf(1.-alpha)*sigma

for i in range(alpha.shape[0]):
    if Z_observed > Upper_Z[i] or Z_observed < Lower_Z[i]:
        print("Z: {:.3f}. If alpha: {} -> Upper_Z: {:.2f}, reject H_0: mu=0. ".format(Z_observed, alpha[i], Upper_Z[i]))
    else:
        print("Z: {:.3f}. If alpha: {} -> Upper_Z: {:.2f}, accept H_0: mu=0. ".format(Z_observed, alpha[i], Upper_Z[i]))

・実行結果

Z: 2.415. If alpha: 0.05 -> Upper_Z: 1.64, reject H_0: mu=0. 
Z: 2.415. If alpha: 0.025 -> Upper_Z: 1.96, reject H_0: mu=0. 
Z: 2.415. If alpha: 0.005 -> Upper_Z: 2.58, accept H_0: mu=0.

上記より、上側確率を小さくするにつれて棄却されにくいことが確認できる。

仮説検定② 〜norm.cdfと$P$値の活用〜

前項の「仮説検定①」では区間推定の結果と$Z$の値を元に検定を行なったが、$Z$の値に対してnorm.cdfを用いることで$P$値を計算し、検定を行うこともできる。

import numpy as np
from scipy import stats

alpha = np.array([0.05, 0.025, 0.005])
sigma = 1.
x = np.array([1.2, 1.5, 0.9, 0.7, 1.1])
Z_observed = np.sqrt(x.shape[0])*np.mean(x)/sigma

P_value = 1.-stats.norm.cdf(Z_observed)

for i in range(alpha.shape[0]):
    if P_value > 1.-alpha[i] or P_value < alpha[i]:
        print("Z: {:.3f}, P_value: {:.3f}. If alpha: {}, reject H_0: mu=0. ".format(Z_observed, P_value, alpha[i]))
    else:
        print("Z: {:.3f}, P_value: {:.3f}. If alpha: {}, accept H_0: mu=0. ".format(Z_observed, P_value, alpha[i]))

・実行結果

Z: 2.415, P_value: 0.008. If alpha: 0.05, reject H_0: mu=0. 
Z: 2.415, P_value: 0.008. If alpha: 0.025, reject H_0: mu=0. 
Z: 2.415, P_value: 0.008. If alpha: 0.005, accept H_0: mu=0. 

仮説検定は②で取り扱った「$P$値の活用」を用いる方が「ノンパラメトリック法」と同様に取り扱うことができるなど、わかりやすい。また、この際にppfcdfの図を元に下記のように考えることもできる。

母分散未知の場合の母平均

区間推定

$$
\large
\begin{align}
\bar{x}-t_{\alpha=0.025}(n-1) \frac{s}{\sqrt{n}} \leq &\mu \leq \bar{x}+t_{\alpha=0.025}(n-1) \frac{s}{\sqrt{n}} \\
s = \frac{1}{n-1} & \sum_{i=1}^{n} (x_i-\bar{x})^2
\end{align}
$$
母分散が未知の際の母平均の$95$%区間推定は上記のように表される。以下、上記を元に具体的な例に対して計算を行う。

import numpy as np
from scipy import stats

x = np.array([1.2, 1.5, 0.9, 0.7, 1.1])
ave_x = np.mean(x)
s = np.sqrt(np.sum((x-ave_x)**2/(x.shape[0]-1)))

Lower_mu = ave_x - stats.t.ppf(1-0.025, x.shape[0]-1)*s/np.sqrt(x.shape[0])
Upper_mu = ave_x + stats.t.ppf(1-0.025, x.shape[0]-1)*s/np.sqrt(x.shape[0])

print("s: {:.2f}".format(s))
print("Estimated mu-interval: [{:.3f}, {:.3f}]".format(Lower_mu, Upper_mu))

・実行結果

> print("s: {:.2f}".format(s))
s: 0.30
> print("Estimated mu-interval: [{:.3f}, {:.3f}]".format(Lower_mu, Upper_mu))
Estimated mu-interval: [0.703, 1.457]

母分散既知の場合と同様の事例を用いたが、$s=0.3$の周辺の$\sigma=0.25$の際の区間が[0.861, 1.299]、$\sigma=0.5$の際の区間が[0.642, 1.518]であったので、概ね同様の結果が得られていることが確認できる。

仮説検定

前項のxave_xに対し、帰無仮説を$H_0: \mu_0=0.95$と設定し、上側確率$\alpha’=\{0.05, 0.025, 0.005\}$を用いた仮説検定を行う。
$$
\large
\begin{align}
t_{\alpha=1-\alpha’}(n-1) \leq &\frac{\bar{x}-\mu_0}{s/\sqrt{n}} \leq t_{\alpha=\alpha’}(n-1) \\
-t_{\alpha=\alpha’}(n-1) \leq &\frac{\sqrt{n}}{s} (\bar{x}-0.95) \leq t_{\alpha=\alpha’}(n-1)
\end{align}
$$
ここでの検定統計量の$\displaystyle t = \frac{\sqrt{n}}{s} (\bar{x}-\mu_0)$に関して上記が成立しなければ$H_0$を棄却し、対立仮説の$H_1: \mu_0 \neq 0.95$を採択する。

import numpy as np
from scipy import stats

mu_0 = 0.95
alpha = np.array([0.05, 0.025, 0.005]) 

x = np.array([1.2, 1.5, 0.9, 0.7, 1.1])
ave_x = np.mean(x)
s = np.sqrt(np.sum((x-ave_x)**2/(x.shape[0]-1)))
t_observed = np.sqrt(x.shape[0])*(ave_x-mu_0)/s

Lower_t = -stats.t.ppf(1.-alpha, x.shape[0])*s
Upper_t = stats.t.ppf(1.-alpha, x.shape[0])*s

for i in range(alpha.shape[0]):
    if t_observed > Upper_t[i] or t_observed < Lower_t[i]:
        print("t: {:.3f}. If alpha: {}, reject H_0: mu=0. ".format(t_observed, alpha[i]))
    else:
        print("t: {:.3f}. If alpha: {}, accept H_0: mu=0. ".format(t_observed, alpha[i]))

print(Lower_t)
print(Upper_t)

・実行結果

t: 0.958. If alpha: 0.05, reject H_0: mu=0. 
t: 0.958. If alpha: 0.025, reject H_0: mu=0. 
t: 0.958. If alpha: 0.005, accept H_0: mu=0. 

> print(Lower_t)
[-0.61119443 -0.77969608 -1.22300952]
> print(Upper_t)
[ 0.61119443  0.77969608  1.22300952]

上記より、上側確率を小さくするにつれて棄却されにくいことが確認できる。

母分散

区間推定

$$
\large
\begin{align}
\frac{(n-1)s^2}{\chi_{\alpha=0.025}^2(n-1)} \leq & \sigma^2 \leq \frac{(n-1)s^2}{\chi_{\alpha=0.975}^2(n-1)} \\
s = \frac{1}{n-1} & \sum_{i=1}^{n} (x_i-\bar{x})^2
\end{align}
$$
母分散の$95$%区間推定は上記のように表される。以下、上記を元に具体的な例に対して計算を行う。

import numpy as np
from scipy import stats

x = np.array([1.2, 1.5, 0.9, 0.7, 1.1])
ave_x = np.mean(x)
s = np.sqrt(np.sum((x-ave_x)**2/(x.shape[0]-1)))

Lower_sigma2 = (x.shape[0]-1)*s**2/stats.chi2.ppf(1.-0.025, x.shape[0]-1)
Upper_sigma2 = (x.shape[0]-1)*s**2/stats.chi2.ppf(1.-0.975, x.shape[0]-1)

print("s^2: {:.2f}".format(s**2))
print("Estimated sigma2s-interval: [{:.3f}, {:.3f}]".format(Lower_sigma2, Upper_sigma2))

・実行結果

> print("s^2: {:.2f}".format(s**2))
s^2: 0.09
> print("Estimated sigma2s-interval: [{:.3f}, {:.3f}]".format(Lower_sigma2, Upper_sigma2))
Estimated sigma2s-interval: [0.033, 0.760]

以下、サンプルを増やした際に$95$%区間はどのように変化するかに関して確認を行う。

import numpy as np
from scipy import stats

x = np.array([1.2, 1.5, 0.9, 0.7, 1.1, 0.5, 1.0, 1.3, 0.9, 1.2])
ave_x = np.mean(x)
s = np.sqrt(np.sum((x-ave_x)**2/(x.shape[0]-1)))

Lower_sigma2 = (x.shape[0]-1)*s**2/stats.chi2.ppf(1.-0.025, x.shape[0]-1)
Upper_sigma2 = (x.shape[0]-1)*s**2/stats.chi2.ppf(1.-0.975, x.shape[0]-1)

print("s^2: {:.2f}".format(s**2))
print("Estimated sigma2s-interval: [{:.3f}, {:.3f}]".format(Lower_sigma2, Upper_sigma2))

・実行結果

> print("s^2: {:.2f}".format(s**2))
s^2: 0.09
> print("Estimated sigma2s-interval: [{:.3f}, {:.3f}]".format(Lower_sigma2, Upper_sigma2))
Estimated sigma2s-interval: [0.041, 0.289]

上記よりサンプルを増やすと$\sigma^2$の$95$%区間が小さくなることが確認できる。

仮説検定

前項のxに対し、帰無仮説を$H_0: \sigma_0^2=0.3$と設定し、上側確率$\alpha’=\{0.05, 0.025, 0.005\}$を用いた仮説検定を行う。
$$
\large
\begin{align}
\chi_{\alpha=0.975}(n-1) \leq & \frac{(n-1)s^2}{\sigma_0^2} \leq \chi_{\alpha=0.025}(n-1) \\
s = \frac{1}{n-1} & \sum_{i=1}^{n} (x_i-\bar{x})^2
\end{align}
$$
ここでの検定統計量の$\displaystyle \chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$に関して上記が成立しなければ$H_0$を棄却し、対立仮説の$H_1: \sigma^2 \neq 0.3$を採択する。

import numpy as np
from scipy import stats

sigma2_0 = 0.3
alpha = np.array([0.05, 0.025, 0.005]) 

x = np.array([1.2, 1.5, 0.9, 0.7, 1.1, 0.5, 1.0, 1.3, 0.9, 1.2])
ave_x = np.mean(x)
s = np.sqrt(np.sum((x-ave_x)**2/(x.shape[0]-1)))

chi2_observed = (x.shape[0]-1)*s**2/sigma2_0

Lower_chi2 = stats.chi2.ppf(alpha, x.shape[0]-1)
Upper_chi2 = stats.chi2.ppf(1.-alpha, x.shape[0]-1)

for i in range(alpha.shape[0]):
    if chi2_observed > Upper_chi2[i] or chi2_observed < Lower_chi2[i]:
        print("chi2: {:.3f}. If alpha: {}, reject H_0: sigma^2=0.3. ".format(chi2_observed, alpha[i]))
    else:
        print("chi2: {:.3f}. If alpha: {}, accept H_0: sigma^2=0.3. ".format(chi2_observed, alpha[i]))

print(Lower_chi2)
print(Upper_chi2)

・実行結果

chi2: 2.603. If alpha: 0.05, reject H_0: sigma^2=0.3. 
chi2: 2.603. If alpha: 0.025, reject H_0: sigma^2=0.3. 
chi2: 2.603. If alpha: 0.005, accept H_0: sigma^2=0.3. 

> print(Lower_t)
[ 3.32511284  2.7003895   1.7349329 ]
> print(Upper_t)
[ 16.9189776   19.0227678   23.58935078]

上記より、上側確率を小さくするにつれて棄却されにくいことが確認できる。

母平均の差

区間推定

仮説検定

母分散の比

区間推定

仮説検定

事前分布・ベイズとMAP推定・予測分布|問題演習で理解する統計学【20】

最尤法は観測値のみを元に推定を行うが、トピックによっては事前知識がわかっている場合や、サンプル数が少ない場合に最尤法が極端な結果を示す場合の補正にあたって、事前分布に基づくベイズ法は役に立つ。事前分布やMAP推定、予測分布が理解できるように演習を取り扱った。
・現代数理統計学 Ch.14 「ベイズ法」の章末演習の解答例
https://www.hello-statisticians.com/explain-books-cat/math_stat_practice_ch14.html

基本問題

ベイズの定理と事前分布・事後分布

二項分布の共役事前分布と事後分布の解釈

共役事前分布(conjugate prior distribution)を用いることで、事後分布の導出をシンプルに行うことができる。共役事前分布はフォーマルな表記だと難しい印象があると思われるので、以下では二項分布を例に共役事前分布について確認し、事後分布の解釈を行う。

ベイズ法ではパラメータの推定にあたって、下記のように事後分布の$P(\theta|x)$が事前分布の$P(\theta)$と尤度の$p(x|\theta)$の積に比例することを利用する。
$$
\large
\begin{align}
P(\theta|x) \propto P(\theta)p(x|\theta) \quad (1)
\end{align}
$$

上記の式は多くの書籍などで出てくるが、抽象的な表記より具体的な確率分布を例に考える方がわかりやすい。以下では二項分布に関して$(1)$式を表すことを考える。

ここまでの内容を元に下記の問いに答えよ。
i) 二項分布におけるパラメータは事象が起こる確率であるので、以下では$\theta=p$のように、パラメータを$\theta$ではなく$p$を用いて表す。確率$p$の試行を$n$回繰り返すとき、事象が起こる回数を$x$、この確率関数を$p(x|p,n)$のように表すとき、確率関数$p(x|p,n)$の式を表せ。
ⅱ) ベータ分布$Be(a,b)$の確率密度関数を答えよ。
ⅲ) i)で取り扱った確率関数$p(x|p,n)$は尤度と考えることができる。ここで$p(x|p,n)$を$x$ではなく$p$の関数と見るときベータ分布と同様の形を持つことをⅱ)の結果と見比べることで示せ。
iv) $p$の事前分布の$P(p)$がベータ分布$Be(a,b)$であるとき、事前分布$P(p)$の関数を記載せよ。
v) $p(x|p,n)P(p)$を計算せよ。
vi) 事後分布$P(p|x)$が$P(p|x) \propto p(x|p,n)P(p)$のように表されることを元に、事後分布$P(p|x)$がどのような分布になるか答えよ。
vⅱ) v)、vi)の結果を確認することでベータ分布$Be(a,b)$の$a,b$のこの事例での意味を考察せよ。

・解答
i)
確率関数$p(x|p,n)$は下記のように表すことができる。
$$
\large
\begin{align}
p(x|p,n) = {}_{n} C_{x} p^{x} (1-p)^{n-x}
\end{align}
$$

ⅱ)
ベータ分布$Be(a,b)$の確率密度関数を$f(x|a,b)$とおくとき、$f(x|a,b)$は下記のように表される。
$$
\large
\begin{align}
f(x|a,b) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}
\end{align}
$$
ここで上記における$B(a,b)$はベータ関数を表す。

ⅲ)
i)とⅱ)の結果を見比べることで、どちらも変数を$x$と見た際に、$x^{a-1} (1-x)^{b-1}$の形状の関数であることを読み取ることができる。

iv)
事前分布$P(p)$はⅱ)の結果の$x$を$p$で置き換えることで得られるので、下記のように表すことができる。
$$
\large
\begin{align}
P(p) = \frac{1}{B(a,b)} p^{a-1} (1-p)^{b-1}
\end{align}
$$

v)
$p(x|p,n)P(p)$は下記のように計算できる。
$$
\large
\begin{align}
p(x|p,n)P(p) &= {}_{n} C_{x} p^{x} (1-p)^{n-x} \times \frac{1}{B(a,b)} p^{a-1} (1-p)^{b-1} \\
&= \frac{{}_{n} C_{x}}{B(a,b)} p^{a+x-1} (1-p)^{b+n-x-1}
\end{align}
$$

vi)
v)の結果より、下記が成立する。
$$
\large
\begin{align}
P(p|x) & \propto p(x|p,n)P(p) \\
&= {}_{n} C_{x} p^{x} (1-p)^{n-x} \times \frac{1}{B(a,b)} p^{a-1} (1-p)^{b-1} \\
& \propto p^{a+x-1} (1-p)^{b+n-x-1}
\end{align}
$$
よって事後分布$P(p|x)$はベータ分布$Be(a+x,b+n-x)$に一致する。

vⅱ)
二項分布における$x, n-x$はコイン投げにおける表と裏の回数に一致する。事前分布における$(a,b)$が事後分布において$(a+x,b+n-x)$になることは、実際の実験を行う前に事前に表が$a$回、裏が$b$回出たと考えることに一致する。

・解説
vⅱ)より、事前分布のベータ分布におけるパラメータの$a, b$に事前知識を組み込むことが可能になります。このようにすることで、試行回数が$5$回や$10$回などの少ない際に事前知識による補正ができると抑えておくと良いと思います。

ポアソン分布の共役事前分布と事後分布の解釈

・問題
ポアソン分布の共役事前分布にはガンマ分布を考えることができるので、ガンマ分布の解釈と合わせて理解すれば良い。以下、導出の流れとガンマ分布の解釈に関して確認を行う。

ポアソン分布の確率関数を$f(x|\lambda)$とおくと、$f(x|\lambda)$は下記のように表される。
$$
\begin{align}
f(x|\lambda) = \frac{\lambda^{x} e^{-\lambda}}{x!} \\
\end{align}
$$

ここで観測値$x_1, x_2, …, x_n$が観測される同時確率を$P(x_1,…,x_n|\lambda)$とおくと、$P(x_1,…,x_n|\lambda)$は下記のように表すことができる。
$$
\begin{align}
P(x_1,…,x_n|\lambda) &= \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!} \\
&= \lambda^{\sum_{i=1}^{n} x_i} e^{-n \lambda} \prod_{i=1}^{n} (x_i!)^{-1} \\
&= \lambda^{n \bar{x}} e^{-n \lambda} \prod_{i=1}^{n} (x_i!)^{-1}
\end{align}
$$

上記を$\lambda$の関数と見ると、ガンマ分布の形状と一致するので、$\lambda$の事前分布$P(\lambda)$に$Ga(a,1)$を考える。このとき$P(\lambda)$は下記のように表すことができる。
$$
\begin{align}
P(\lambda) = \frac{1}{\Gamma(a)} \lambda^{a-1} e^{-\lambda}
\end{align}
$$

ここまでの内容を元に以下の問題に答えよ。
i) 事後分布$P(\lambda|x_1,x_2,…,x_n) \propto P(x_1,…,x_n|\lambda)P(\lambda)$を計算せよ。ただし、$\propto$を用いて$\lambda$に関連しない項は省略して良い。
ⅱ)
$$
\begin{align}
f(x|a,b) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{-b \lambda}
\end{align}
$$
$Ga(a,b)$の確率密度関数$f(x|a,b)$が上記のように表されるとき、i)の結果より、$\lambda$の事後分布$P(\lambda|x_1,x_2,…,x_n)$がどのようなパラメータのガンマ分布に従うか答えよ。
ⅲ) ガンマ分布$Ga(a,b)$のモーメント母関数を$m(t)$のようにおくと、$\lambda > t$のとき$m(t)$は下記のように表すことができる。
$$
\begin{align}
m(t) = \left( \frac{b}{b-t} \right)^{a}
\end{align}
$$
上記に対し、$\displaystyle \frac{d}{dt}m(t), \frac{d^2}{dt^2}m(t)$を導出せよ。
iv) ⅲ)の結果を元にガンマ分布$Ga(a,b)$の期待値$E[\lambda]$と分散$V[\lambda]$を計算せよ。
v) ⅱ)とiv)の結果を元に、観測値が観測されるにつれて事後分布は事前分布に比べてどのように変化するかを考察せよ。

・解答
i)
下記のように事後分布$P(\lambda|x_1,x_2,…,x_n)$に関して計算を行うことができる。
$$
\large
\begin{align}
P(\lambda|x_1,x_2,…,x_n) & \propto P(x_1,…,x_n|\lambda)P(\lambda) \\
&= \lambda^{n \bar{x}} e^{-n \lambda} \prod_{i=1}^{n} (x_i!)^{-1} \times \frac{1}{\Gamma(a)} \lambda^{a-1} e^{-\lambda} \\
& \propto \lambda^{a + n \bar{x} – 1} e^{-(n+1) \lambda}
\end{align}
$$

ⅱ)
事後分布$P(\lambda|x_1,x_2,…,x_n)$はガンマ分布$Ga(a + n \bar{x}, n+1)$のガンマ分布に従う。

ⅲ)
$\displaystyle \frac{d}{dt}m(t), \frac{d^2}{dt^2}m(t)$は下記のように計算できる。
$$
\large
\begin{align}
\frac{d}{dt}m(t) &= \frac{d}{dt} \left( \frac{b}{b-t} \right)^{a} \\
&= b^a \frac{d}{dt} (b-t)^{-a} \\
&= b^a \times -a(b-t)^{-a-1} \times (-1) = \frac{ab^{a}}{(b-t)^{a+1}} \\
\frac{d^2}{dt^2}m(t) &= \frac{d}{dt} \left( \frac{ab^{a}}{(b-t)^{a+1}} \right) \\
&= ab^{a} \frac{d}{dt} (b-t)^{-(a+1)} \\
&= ab^{a} \times -(a+1) (b-t)^{-(a+2)} \times (-1) = \frac{a(a+1)b^{a}}{(b-t)^{a+2}}
\end{align}
$$

iv)
期待値$E[\lambda]$と分散$V[\lambda]$は下記のように計算することができる。
$$
\large
\begin{align}
E[\lambda] &= \frac{d}{dt}m(t) \Bigr|_{t=0} \\
&= \frac{ab^{a}}{(b-0)^{a+1}} \\
&= \frac{a}{b} \\
V[\lambda] &= \frac{d^2}{dt^2}m(t) \Bigr|_{t=0} – \left( \frac{d}{dt}m(t) \Bigr|_{t=0} \right)^{2} \\
&= \frac{a(a+1)b^{a}}{(b-0)^{a+2}} – \left( \frac{a}{b} \right)^{2} \\
&= \frac{a(a+1)}{b^2} – \frac{a^2}{b^2} \\
&= \frac{a^2+a-a^2}{b^2} \\
&= \frac{a}{b^2}
\end{align}
$$

v)
iv)の結果を元にⅱ)で確認を行なった事前分布$Ga(a, 1)$と事後分布$Ga(a + n \bar{x}, n+1)$を確認する。事前分布の期待値・分散をそれぞれ$E[\lambda], V[\lambda]$、事後分布の期待値・分散をそれぞれ$E[\lambda|x_1,x_2,…,x_n], V[\lambda|x_1,x_2,…,x_n]$とおく。$E[\lambda], E[\lambda|x_1,x_2,…,x_n], V[\lambda], V[\lambda|x_1,x_2,…,x_n]$はそれぞれ下記のように表すことができる。
$$
\large
\begin{align}
E[\lambda] &= \frac{a}{1} = a \\
E[\lambda|x_1,x_2,…,x_n] &= \frac{a + n \bar{x}}{n+1} \\
V[\lambda] &= \frac{a}{1^2} = a \\
V[\lambda|x_1,x_2,…,x_n] &= \frac{a + n \bar{x}}{(n+1)^2}
\end{align}
$$

上記より、$n$が大きくなるにつれて$E[\lambda], E[\lambda|x_1,x_2,…,x_n]$が標本平均の$\bar{x}$に近づき、$V[\lambda], E[\lambda|x_1,x_2,…,x_n]$が$0$に近づくことがわかる。

これは$n$が大きくなるにつれて最尤推定の結果に近づくことを意味し、ベイズの定理を用いた推定が最尤法の拡張であると考えることができることを表している。

・解説
主に下記の内容に基づいて作成を行いました。
https://www.hello-statisticians.com/explain-terms-cat/conjugate_dist1.html

ⅲ)で取り扱ったガンマ分布のモーメント母関数に関しては下記で詳しい導出を行いましたので、こちらも参考になると思います。
https://www.hello-statisticians.com/explain-books-cat/toukeigaku-aohon/ch1_blue_practice.html#19

v)の結果の解釈は最尤法とベイズを比較する際によく出てくるので、事後分布を用いた推定結果の解釈に関してはなるべく行うようにすると良いと思います。

正規分布の共役事前分布の設定と事後分布

・問題
観測値が正規分布に従うと仮定した際の尤度のパラメータに対して正規分布の共役事前分布を考えることで、ベイズの定理を用いて事後分布を計算することができる。

この計算は重要なトピックである一方で平方完成に関連する計算が複雑になり、計算ミスなどが起こりやすい。この問題では以下、関連の計算について可能な限りシンプルに計算ができるように導出の流れの確認を行う。

以下の問題に答えよ。
i) 正規分布$N(\mu, \sigma^2)$の確率密度関数を$f(x|\mu,\sigma^2)$のようにおくとき、$f(x|\mu,\sigma^2)$を$x, \mu, \sigma^2$の式で表せ。
ⅱ) 確率変数列${X_1,…,X_n}$に対して$X_1,…,X_n \sim N(\mu, \sigma^2) \quad i.i.d.,$が成立するとき、確率変数列$\{X_1,…,X_n\}$に対応する観測値の列$\{x_1,…,x_n\}$が観測されたときの$\mu$に関する尤度$L(\mu|x_1,…,x_n)$を表せ。
ⅲ) $\displaystyle \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$のようにおくとき、Fisher-Neymanの分解定理を用いて$\bar{x}$が$\mu$の十分統計量であることを示せ。
iv) $\mu$の事前分布が正規分布$N(\lambda,\tau^2)$に従うとき、確率密度関数$P(\mu)$を$\lambda,\tau^2$を用いて表せ。
v) $a>0$のとき$g(x) = ax^2 + bx + c$の平方完成を行え。また、$g(x)$が最小となる$x$の値を答えよ。
vi) $x_1,x_2,…,x_n$が観測された際の$\mu$の事後分布の確率密度関数$P(\mu|x_1,…,x_n)$をベイズの定理に基づいて計算し、事後分布が$\displaystyle N \left( \frac{n \tau^2 \bar{x} + \sigma^2 \lambda}{n \tau^2 + \sigma^2} , \frac{\sigma^2 \tau^2}{n \tau^2 + \sigma^2} \right)$に一致することを確認せよ。
vⅱ) vi)の結果を事後分布の平均に着目して解釈せよ。

・解答
i)
確率密度関数$f(x|\mu,\sigma^2)$は下記のように表すことができる。
$$
\large
\begin{align}
f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[ -\frac{(x-\mu)^2}{2 \sigma^2} \right]
\end{align}
$$

ⅱ)
尤度$L(\mu|x_1,…,x_n)$は同時確率に一致するので、$i.i.d.,$であることから下記のように導出することができる。
$$
\large
\begin{align}
L(\mu|x_1,…,x_n) &= f(x_1,…,x_n|\mu,\sigma^2) = \prod_{i=1}^{n} f(x_i|\mu,\sigma^2) \\
&= \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[ -\frac{(x_i-\mu)^2}{2 \sigma^2} \right] \\
&= \left( \frac{1}{\sqrt{2 \pi} \sigma} \right)^{n} \exp \left[ -\sum_{i=1}^{n} \frac{(x_i-\mu)^2}{2 \sigma^2} \right]
\end{align}
$$

ⅲ)
$(x_i-\mu) = (x_i-\bar{x}) + (\bar{x}-\mu)$より、 $\displaystyle \sum_{i=1}^{n} (x_i-\mu)^2$は下記のように変形できる。
$$
\large
\begin{align}
\sum_{i=1}^{n} (x_i-\mu)^2 &= \sum_{i=1}^{n} ((x_i-\bar{x}) + (\bar{x}-\mu))^2 \\
&= \sum_{i=1}^{n} ((x_i-\bar{x})^2 + 2(\bar{x}-\mu)^2 + (x_i-\bar{x})(\bar{x}-\mu)) \\
&= \sum_{i=1}^{n} (x_i-\bar{x})^2 + \sum_{i=1}^{n} (\bar{x}-\mu)^2 + 2(\bar{x}-\mu) \sum_{i=1}^{n}(x_i-\bar{x}) \\
&= \sum_{i=1}^{n} (x_i-\bar{x})^2 + \sum_{i=1}^{n} (\bar{x}-\mu)^2 \\
&= n(x_i-\bar{x})^2 + \sum_{i=1}^{n} (\bar{x}-\mu)^2
\end{align}
$$

よって同時確率密度関数$f(x_1,…,x_n|\mu,\sigma^2)$は下記のように変形できる。
$$
\large
\begin{align}
f(x_1,…,x_n|\mu,\sigma^2) &= \prod_{i=1}^{n} f(x_i|\mu,\sigma^2) \\
&= \left( \frac{1}{\sqrt{2 \pi} \sigma} \right)^{n} \exp \left[ -\sum_{i=1}^{n} \frac{(x_i-\mu)^2}{2 \sigma^2} \right] \\
&= \exp \left[ -\frac{n(\bar{x}-\mu)^2}{2 \sigma^2} \right] \times \left( \frac{1}{\sqrt{2 \pi} \sigma} \right)^{n} \exp \left[ -\sum_{i=1}^{n} \frac{(x_i-\bar{x})^2}{2 \sigma^2} \right]
\end{align}
$$

上記のように同時確率密度関数を$\mu, \bar{x}$の関数と$x_i,\bar{x}$の関数に分解することができたのでFisher-Neymanの定理より$\bar{x}$が$\mu$の十分統計量であることが示せる。

iv)
確率密度関数$P(\mu)$は下記のように表せる。
$$
\large
\begin{align}
f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2 \pi} \tau} \exp \left[ -\frac{(\mu-\lambda)^2}{2 \tau^2} \right]
\end{align}
$$

v)
下記のように$g(x)$の平方完成を行うことができる。
$$
\large
\begin{align}
g(x) &= ax^2+bx+c \\
&= a \left( x^2 + \frac{b}{a}x \right) + c \\
&= a \left( x + \frac{b}{2a} \right)^2 + c – a \left( \frac{b}{2a} \right)^2 \\
&= a \left( x + \frac{b}{2a} \right)^2 + c – \frac{ab^2}{4a^2} \\
&= a \left( x + \frac{b}{2a} \right)^2 + c – \frac{b^2}{4a}
\end{align}
$$

$g(x)$は$a>0$から下に凸の関数であるので、上記より、$\displaystyle x = -\frac{b}{2a}$のとき$g(x)$は最小値を取ることがわかる。

vi)
事後分布の確率密度関数$P(\mu|x_1,…,x_n)$に関しては下記のように考えることができる。
$$
\large
\begin{align}
P(\mu|x_1,…,x_n) & \propto L(\mu|x_1,…,x_n) P(\mu) \\
&= \exp \left[ -\frac{n(\bar{x}-\mu)^2}{2 \sigma^2} \right] \times \left( \frac{1}{\sqrt{2 \pi} \sigma} \right)^{n} \exp \left[ -\sum_{i=1}^{n} \frac{(x_i-\bar{x})^2}{2 \sigma^2} \right] \times \frac{1}{\sqrt{2 \pi} \tau} \exp \left[ -\frac{(\mu-\lambda)^2}{2 \tau^2} \right] \\
& \propto \exp \left[ -\frac{n(\bar{x}-\mu)^2}{2 \sigma^2} \right] \times \exp \left[ -\frac{(\mu-\lambda)^2}{2 \tau^2} \right] \\
&= \exp \left[ -\frac{\sigma^2(\mu-\lambda)^2 + n \tau^2(\mu-\bar{x})^2}{2 \sigma^2 \tau^2} \right] \\
&= \exp \left[ -\frac{(n \tau^2 + \sigma^2)\mu^2 – 2(n \tau^2 \bar{x} + \sigma^2 \lambda)\mu + …}{2 \sigma^2 \tau^2} \right] \\
& \propto \exp \left[ -\frac{n \tau^2 + \sigma^2}{2 \sigma^2 \tau^2} \left(\mu – \frac{n \tau^2 \bar{x} + \sigma^2 \lambda}{n \tau^2 + \sigma^2} \right)^2 \right]
\end{align}
$$

vⅱ)
$\displaystyle \frac{n \tau^2 \bar{x} + \sigma^2 \lambda}{n \tau^2 + \sigma^2}$を解釈するにあたっては、標本平均$\bar{x}$と事前分布の平均の$\lambda$がそれぞれどのような配分で事後分布の平均に作用するかを確認すればよい。

ここで事後分布の平均は$\bar{x}$と$\lambda$を$n \tau^2:\sigma^2$に内分する点であることが確認でき、$n$が大きい時は$\bar{x}$に限りなく近づくことも同時にわかる。

・解説
下記の内容に基づいて作成を行いました。
https://www.hello-statisticians.com/explain-terms-cat/conjugate_dist1.html#i-6

ⅲ)のようにFisher-Neymanの定理の式の形で同時確率密度関数、尤度を表すことで$\mu$に関連する部分の表記をシンプルに行えます。このような表記を用いることで、vi)での計算で$\displaystyle \sum$を考えなくてよく、これにより式が見やすくなります。

vi)の計算にあたってはv)のように全ての項を考えるのではなく、v)の結果を活用しさらに$\propto$を用いて定数項は考えないことで計算をシンプルに行うことができます。

ベイズ推定量とMAP推定量

発展問題

共役事前分布と指数型分布族

予測分布

参考

統計検定2級問題解説 ~2021年6月実施~ (問13~問22)

過去問題

過去問題は統計検定公式問題集が問題と解答例を公開しています。こちらを参照してください。


問13 解答

(推定量)

$\boxed{ \ \mathsf{17}\ }$ ①

Ⅰ.母集団の特徴づける定数のことを母数というが、母集団から測定された標本データをもとに、確率分布の(現実には測定できない)母数を推定した数量を推定量という。推定量は標本データの関数として表されるが、確率変数の関数は確率変数なので、推定量は確率変数となる。
Ⅱ.推定量$\hat\theta_n$(推定量の標本分布が標本数$n$によって変化するものとする)が母数$\theta$に確率収束している場合、$\hat\theta$を一致推定量という。
Ⅲ.推定量$\hat\theta$の期待値が常に母数$\theta$に等しくなる場合、$\hat\theta$を不偏推定量という。例えば母分散の推定量である標本分散は一致推定量であるが不偏推定量ではない。


問14 解答

(推定量の期待値、分散)

[1]

$\boxed{ \ \mathsf{18}\ }$ ⑤

$E[\hat\theta]=\theta$となる場合、$\hat\theta$は不偏推定量という。
$$\begin{align}
E[\hat\mu_1]&=E\left[\frac1n\sum_{i=1}^nX_i\right]=\frac1n\sum_{i=1}^nE[X_i]=\frac1n\times n\mu=\mu\\
E[\hat\mu_2]&=E\left[\frac12(X_1+X_2)\right]=\frac12(E[X_1]+E[X_2])=\frac12(\mu+\mu)=\mu\\
E[\hat\mu_3]&=E[X_1]=\mu\\
E[\hat\mu_4]&=E\left[\frac2{n(n+1)}\sum_{i=1}^niX_i\right]=\frac2{n(n+1)}\sum_{i=1}^niE[X_i]=\frac2{n(n+1)}\sum_{i=1}^ni\mu\\&=\frac2{n(n+1)}\times\frac{n(n+1)}{2}\times\mu=\mu
\end{align}$$

[2]

$\boxed{ \ \mathsf{19}\ }$ ①

$$\begin{align}
V[\hat\mu_1]&=V\left[\frac1n\sum_{i=1}^nX_i\right]=\frac1{n^2}\sum_{i=1}^nV[X_i]=\frac1{n^2}\times n\sigma^2=\frac1n\sigma^2\\
V[\hat\mu_2]&=V\left[\frac12(X_1+X_2)\right]=\frac14(V[X_1]+V[X_2])=\frac14(\sigma^2+\sigma^2)=\frac12\sigma^2\\
V[\hat\mu_3]&=V[X_1]=\sigma^2\\
V[\hat\mu_4]&=V\left[\frac2{n(n+1)}\sum_{i=1}^niX_i\right]=\frac4{n^2(n+1)^2}\sum_{i=1}^ni^2V[X_i]=\frac4{n^2(n+1)^2}\sum_{i=1}^ni^2\sigma^2\\&=\frac4{n^2(n+1)^2}\times\frac{n(n+1)(2n+1)}{6}\times\sigma^2=\frac{2(2n+1)}{3n(n+1)}\sigma^2
\end{align}$$
ここで、$n\gt3$なので、$\displaystyle \frac1n\lt\frac12\lt1$
また、$\displaystyle \frac1n=\frac{3(n+1)}{3n(n+1)}<\frac{2(2n+1)}{3n(n+1)}$となることから$V[\hat\mu_1]$が最小となる。


問15 解答

(正規母集団の区間推定とサンプルサイズ)

[1]

$\boxed{ \ \mathsf{20}\ }$ ④

正規母集団から抽出した標本の標本平均は$\bar{X}\sim N(\mu,\sigma^2/n)$なので,$\begin{align}\frac{\bar{X}-\mu}{\sqrt{\sigma^2/n}}\end{align}$は標準正規分布に従う。よって「標準正規分布の上側確率」の表から
$$P\left(|\bar{X}-\mu|\le1.96{\sqrt{\sigma^2/n}}\right)=0.95$$
したがって、真の$\mu$が含まれる確率が$95\%$となる区間($\mu$の$95\%$信頼区間)は以下の通りとなる。
$$\begin{align}
\bar{X}-1.96\frac{\sigma}{\sqrt{n}}\le&\mu\le\bar{X}+1.96\frac{\sigma}{\sqrt{n}}\\
5.25-1.96\times\frac{12}{\sqrt{100}}\le&\mu\le5.25+1.96\times\frac{12}{\sqrt{100}}\\
2.90\le&\mu\le7.60
\end{align}$$

[2]

$\boxed{ \ \mathsf{21}\ }$ ③

[1]から$\mu$の$95\%$信頼区間の幅は$\displaystyle\ 2\times1.96\frac{\sigma}{\sqrt{n}}$。これを$4$以下にしたいので、
$$2\times1.96\times\frac{12}{\sqrt{n}}\le4\ \Rightarrow\ n\ge\left(\frac{2\times1.96\times12}{4}\right)^2=138.3$$


問16 解答

(単回帰モデル、最小二乗法)

[1]

$\boxed{ \ \mathsf{22}\ }$ ①

最小二乗法は実際の値$y_i$と回帰式によって予測された値$\hat{y}_i$との差(残差)の二乗和を最小にするように回帰係数を求める手法である。残差の二乗和(残差平方和)は
$$S=\sum_{i=1}^n(y_i-\hat{y}_i)^2=\sum_{i=1}^n(y_i-\hat\beta x_i)^2=\sum_{i=1}^n(y_i^2-2\hat\beta x_iy_i+\hat\beta^2x_i^2)$$
$S$を最小とする$\hat\beta$を求めるために、$\hat\beta$で偏微分し$0$に等しいとすると、
$$\begin{eqnarray}
\frac{\partial S}{\partial\hat\beta}=\sum_{i=1}^n(-2x_iy_i+2\hat\beta x_i^2)=0\\
\hat\beta\sum_{i=1}^nx_i^2=\sum_{i=1}^nx_iy_i\\
\therefore\ \hat\beta=\frac{\sum_{i=1}^nx_iy_i}{\sum_{i=1}^nx_i^2}
\end{eqnarray}$$

[2]

$\boxed{ \ \mathsf{23}\ }$ ②

Ⅰ.[1]の結果から、一般的に
$$\hat\beta=\frac{\sum_{i=1}^nx_iy_i}{\sum_{i=1}^nx_i^2}\neq\frac{\sum_{i=1}^ny_i}{\sum_{i=1}^nx_i}$$
であるから、
$$\begin{eqnarray}
\hat\beta\sum_{i=1}^nx_i&\neq&\sum_{i=1}^ny_i\\
\sum_{i=1}^ny_i-\hat\beta\sum_{i=1}^nx_i&\neq&0\\
\sum_{i=1}^n\hat u_i&\neq&0
\end{eqnarray}$$
Ⅱ.[1]から
$$\begin{eqnarray}
\hat\beta\sum_{i=1}^nx_i^2=\sum_{i=1}^nx_iy_i\\
\sum_{i=1}^nx_i(y_i-\hat\beta x_i)=0\\
\sum_{i=1}^nx_i(y_i-\hat y_i)=0\\
\sum_{i=1}^nx_i\hat u_i=0
\end{eqnarray}$$
Ⅲ.[1]の結果から、一般的に
$$\hat\beta=\frac{\sum_{i=1}^nx_iy_i}{\sum_{i=1}^nx_i^2}\neq\frac{\sum_{i=1}^ny_i}{\sum_{i=1}^nx_i}$$
であるから、
$$\begin{eqnarray}
\frac1n\hat\beta\sum_{i=1}^nx_i&\neq&\frac1n\sum_{i=1}^ny_i\\
\frac1n\sum_{i=1}^n\hat\beta x_i&\neq&\bar{y}\\
\frac1n\sum_{i=1}^n\hat y_i&\neq&\bar{y}
\end{eqnarray}$$
Ⅳ.Ⅲ.と同じく
$$\begin{eqnarray}
\frac1n\hat\beta\sum_{i=1}^nx_i&\neq&\frac1n\sum_{i=1}^ny_i\\
\hat\beta\bar{x}&\neq&\bar{y}
\end{eqnarray}$$

※定数項を含む単回帰モデル$$y_i=\alpha+\beta x_i+u_i$$の場合、残差平方和は
$$S=\sum_{i=1}^n(y_i-\hat{y}_i)^2=\sum_{i=1}^n(y_i-\hat\alpha-\hat\beta x_i)^2$$
$S$を最小とする$\hat\beta$を求めるために、$\hat\alpha,\hat\beta$で偏微分し$0$に等しいとすると、
$$
\sum_{i=1}^n(y_i^2-2\hat\alpha y_i-2\hat\beta x_iy_i+\hat\alpha^2+2\hat\alpha\hat\beta x_i+\hat\beta^2 x_i^2)
$$
$$\begin{eqnarray}
\frac{\partial S}{\partial\hat\alpha}=\sum_{i=1}^n(-2y_i+2\hat\alpha+2\hat\beta x_i)&=&0\\
n\hat\alpha+\hat\beta\sum_{i=1}^nx_i&=&\sum_{i=1}^ny_i&\cdots(A)\\
\frac{\partial S}{\partial\hat\beta}=\sum_{i=1}^n(-2x_iy_i+2\hat\alpha x_i+2\hat\beta x_i^2)&=&0\\
\hat\alpha\sum_{i=1}^nx_i+\hat\beta\sum_{i=1}^nx_i^2&=&\sum_{i=1}^nx_iy_i&\cdots(B)
\end{eqnarray}$$
$(A)$から
$$\hat\alpha=\frac1n\sum_{i=1}^ny_i-\frac1n\hat\beta\sum_{i=1}^nx_i=\bar{y}-\hat\beta\bar{x}$$
$(B)$から
$$\begin{eqnarray}
(\bar{y}-\hat\beta\bar{x})n\bar{x}+\hat\beta\sum_{i=1}^nx_i^2=\sum_{i=1}^nx_iy_i\\
\hat\beta(\sum_{i=1}^nx_i^2-n\bar{x}^2)=\sum_{i=1}^nx_iy_i-n\bar{x}\bar{y}\\
\hat\beta=\frac{\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{\sum_{i=1}^n(x_i-\bar{x})^2}\\
\end{eqnarray}$$
さらに、(A)から
$$\begin{eqnarray}
\sum_{i=1}^ny_i-n\hat\alpha-\hat\beta\sum_{i=1}^nx_i&=&0\\
\sum_{i=1}^n(y_i-\hat\alpha-\hat\beta x_i)&=&0\\
\sum_{i=1}^n(y_i-\hat y_i)&=&0\\
\sum_{i=1}^n\hat u_i&=&0
\end{eqnarray}$$
また
$$\begin{eqnarray}
\bar y=\frac1n\sum_{i=1}^ny_i=\frac1n\sum_{i=1}^n(\hat\alpha+\hat\beta x_i)=\frac1n\sum_{i=1}^n\hat y\\
\bar y=\frac1n\sum_{i=1}^ny_i=\hat\alpha+\frac1n\hat\beta\sum_{i=1}^n x_i=\hat\alpha+\hat\beta\bar x
\end{eqnarray}$$
$(B)$から
$$\begin{eqnarray}
\sum_{i=1}^nx_iy_i-\hat\alpha\sum_{i=1}^nx_i-\hat\beta\sum_{i=1}^nx_i^2&=&0\\
\sum_{i=1}^nx_i(y_i-\hat\alpha-\hat\beta x_i)&=&0\\
\sum_{i=1}^nx_i(y_i-\hat y_i)&=&0\\
\sum_{i=1}^nx_i\hat u_i&=&0
\end{eqnarray}$$
[2]のⅠ.Ⅲ.Ⅳ.に相当する関係はいずれも$(A)$の式から導き出されるもので、定数項を含まないモデルでは$(A)$に相当する条件がなく、Ⅰ.Ⅲ.Ⅳ.の関係は成り立たない。


問17 解答

(母比率の区間推定)

[1]

$\boxed{ \ \mathsf{24}\ }$ ②

成功確率$p$の試行を$n$回行うときに成功する回数$X$は二項分布$B(n,p)$に従う。
  $\therefore\ \ E(X)=np,\ V(X)=np(1-p)$
このとき,$n$がある程度大きいときは,中心極限定理によって,$B(n,p)$は正規分布$N(np,np(1-p))$に近似できる。よって,$X$を標準化すると標準正規分布$N(0,1)$に従う。$$Z=\frac{X-np}{\sqrt{np(1-p)}}=\frac{X/n-p}{\sqrt{\frac{p(1-p)}n}}\sim N(0,1)$$ここで,標本平均 $\hat p=x/n$は$p$の一致推定量なので,$n$が十分大きいとき$p$は$\hat p$に置き換えられる。
したがって,母比率の$100(1-\alpha)\%$信頼区間は,標準正規分布の上側 $100\alpha/2\%$ 点を $z_{\alpha/2}$とすると,$$P\left(\hat p-z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}n}\le p\le\hat p+z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}n}\right)=1-\alpha$$
$500$ 回画びょうを投げて $284$ 回表が出たので,比率の推定値は $\hat p=284/500=0.568$
これから,表が出る確率の$95\%$信頼区間は,$n=500$,$\hat p=0.568$,$\alpha=0.05$として$$\begin{align}\hat p\pm z_{\alpha/2}\sqrt{\frac{\hat p(1-\hat p)}n}=&0.568\pm1.96\times\sqrt{\frac{0.568\times(1-0.568)}{500}}\\=&0.568\pm0.043\\=&[0.525,0.611]\end{align}$$

[2]

$\boxed{ \ \mathsf{25}\ }$ ①

・確率 $p=1/2$ の試行を $n=8$ 回行って成功する回数の分布なので,二項分布 $B(n,p)=B(8,1/2)$ に従う。$$\begin{align}P(X=4)=&{}_8\mathrm{C}_4\times(1/2)^4\times(1-1/2)^{8-4}\\=&\frac{8\times7\times6\times5}{4\times3\times2\times1}\times(1/2)^4\times(1/2)^4=0.273\end{align}$$
・帰無仮説$H_0:p=1/2$、対立仮説$H_1:p\gt1/2$として、$X\ge c_1$のとき$H_0$を棄却する検定は、片側検定となるので、$X=7$のときの$P_-$値は
$$P(X\ge7|H_0)=P(X=7)+P(X=8)=0.031+0.004=0.035$$
・帰無仮説$H_0:p=1/2$、対立仮説$H_1:p\neq1/2$として、$|X-4|\ge c_2$のとき$H_0$を棄却する検定は、両側検定となり確率分布が対称であるので、実現値が$X=7$のときの$P_-$値は
$$\begin{align}P(|X-4|\ge3|H_0)=&P(X=0)+P(X=1)+P(X=7)+P(X=8)\\=&0.004+0.0031+0.031+0.004=0.070\end{align}$$


問18 解答

(母平均の差の検定(分散未知であるが等分散))

$\boxed{ \ \mathsf{26}\ }$ ②

(ア)正規母集団$N(\mu_1,\sigma^2)$から抽出した標本平均$\bar{X}=\frac1m\sum_{i=1}^mX_i$は$N(\mu_1,\sigma^2/m)$に従い、正規母集団$N(\mu_2,\sigma^2)$から抽出した標本平均$\bar{Y}=\frac1n\sum_{i=1}^nY_i$は$N(\mu_2,\sigma^2/n)$に従う。
したがって、正規分布の再生性から、標本平均の差$\bar{X}-\bar{Y}$は$N(\mu_1-\mu_2,\sigma^2/m+\sigma^2/n)$に従う。その結果、$\bar{X}-\bar{Y}$を標準化して$$A=\frac{\bar{X}-\bar{Y}-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma^2}{m}+\frac{\sigma^2}{n}}}\sim N(0,1)$$となる。
(イ)群$1,2$について$$\begin{eqnarray}
\sum_{i=1}^m\frac{(X_i-\bar{X})^2}{\sigma^2}=\frac{(m-1)U_X^2}{\sigma^2}\sim \chi^2(m-1)\\
\sum_{i=1}^n\frac{(Y_i-\bar{Y})^2}{\sigma^2}=\frac{(n-1)U_Y^2}{\sigma^2}\sim \chi^2(n-1)
\end{eqnarray}$$したがって、$\chi^2$分布の再生性から、$$B=\frac{(m-1)U_X^2+(n-1)U_Y^2}{\sigma^2}\sim \chi^2(m+n-2)$$となる。
(ウ)独立な$2$つの確率変数$Z\sim N(0,1)$と$W\sim\chi^2(m)$があるとき、$$\frac{Z}{\sqrt{W/m}}$$は自由度$m$の$t$分布に従う。よって、(ア)と(イ)から$$T=\frac{A}{\sqrt{\frac{B}{m+n-2}}}$$は自由度$m+n-2$の$t$分布に従う。


問19 解答

(独立性の検定)

独立性の検定は,2つの属性$A,B$が独立かどうかの検定。
属性$A$のカテゴリが$A_i$,属性$B$のカテゴリが$B_j$の観測度数を$f_{ij}=O_{ij}$とし,
 $f_{i\cdot}=\sum_jf{ij}$を$i$行の度数合計(行和),
 $f_{\cdot j}=\sum_if{ij}$を$j$列の度数合計(列和),
 $f_{\cdot\cdot}=\sum_i\sum_jf_{ij}=\sum_if_{i\cdot}=\sum_jf_{\cdot j}=n$を全度数合計という。
属性$A,B$が独立という帰無仮説は,$H_0:P(A\cap B)=P(A)P(B)$が成り立つことである。
ここで,カテゴリ$A_i,B_j$の出現確率はそれぞれ$f_{i\cdot}/n,f_{\cdot j}/n$であるので,$H_0$のもとで,属性$A$のカテゴリが$A_i$,属性$B$のカテゴリが$B_j$の期待度数は$$E_{ij}=n(f_{i\cdot}/n)(f_{\cdot j}/n)=f_{i\cdot}f_{\cdot j}/n$$となる。
帰無仮説$H_0$の下で,次検定の統計量$\chi^2$は度数が大きいときに近似的に$\chi^2$分布に従う。行和と列和が固定されていることから自由度は$(r$(行の数)$-1)\times(c$(列の数)$-1)$となる。$$\chi^2=\sum_{i=1}^r\sum_{j=1}^c\frac{(O_{ij}-E_{ij})^2}{E_{ij}}\sim\chi^2((r-1)(c-1))$$有意水準$100\alpha\%$で帰無仮説が棄却されるには,$\chi^2$分布の上側$\alpha$点より上で求めた$\chi^2$統計量が大きくなればよい。

$\boxed{ \ \mathsf{27}\ }$ ③

期待度数は
 喫煙歴あり・心筋梗塞あり $10\times15/20=7.5$
 喫煙歴あり・心筋梗塞なし $10\times15/20=7.5$
 喫煙歴なし・心筋梗塞あり $10\times5/20=2.5$
 喫煙歴なし・心筋梗塞なし $10\times5/20=2.5$
よって、$\chi^2$統計量の実現値は
$$\chi^2=\frac{(9-7.5)^2}{7.5}+\frac{(6-7.5)^2}{7.5}+\frac{(1-2.5)^2}{2.5}+\frac{(4-2.5)^2}{2.5}=2.40$$
$\chi^2$統計量は帰無仮説の下で近似的に自由度$(2-1)\times(2-1)=1$の$\chi^2$分布に従う。
ここで、確率変数$W$が自由度$1$の$\chi^2$分布に従うとき、標準正規分布に従う確率変数$Z$を用いて$W=Z^2$と表わされる。したがって$P_-$値は「正規標準分布の上側確率」の表を用いて、
$$P(W\gt2.40)=P(|Z|\gt\sqrt{2.40})=P(|Z|\gt1.55)=2\times0.0606=0.1212$$


問20 解答

(第一種の過誤)

真実
帰無仮説が正しい対立仮説が正しい
検定の結果帰無仮説を棄却しない
(対立仮説が正しいとは言えない)
正しい第二種の過誤(β)
帰無仮説を棄却する
(対立仮説が正しい)
第一種の過誤(α)
有意水準
正しい
検出力(1-β)

[1]

$\boxed{ \ \mathsf{28}\ }$ ③

$X_j\sim N(\mu_j,1),\ X_k\sim N(\mu_k,1)$ であるから、$X_j-X_k\sim N(\mu_j-\mu_k,2)$
よって、帰無仮説$H_0:\mu_j=\mu_k$の下で$$Z=\frac{X_j-X_k-(\mu_j-\mu_k)}{\sqrt{2}}=\frac{X_j-X_k}{\sqrt{2}}\sim N(0,1)$$が成り立つ。したがって、第1種過誤の確率$\alpha_{12}(1.96\sqrt{2})$の値は$$\alpha_{12}(1.96\sqrt{2})=P(|X_j-X_k|\gt1.96\sqrt{2})=P(|Z|\gt1.96)=2\times0.025=0.050$$

[2]

$\boxed{ \ \mathsf{29}\ }$ ④

$\alpha_{12}(z)$が$(5/3)\%$となるような$z$を定める。
$$\begin{eqnarray}\alpha_{12}(z)=P(|X_j-X_k|\gt z)=P(|Z|\gt z/\sqrt{2})&=&0.05/3\\P(Z\gt z/\sqrt{2})&=&0.05/6=0.0083\end{eqnarray}$$
「正規標準分布の上側確率」の表から、
$P(Z>2.39)=0.0084,\ P(Z>2.40)=0.0082$
$\therefore\ z/\sqrt{2}=2.395\ \Rightarrow\ z=2.395\times\sqrt{2}=3.387$


問21 解答

(一元配置分散分析)

[1]

$\boxed{ \ \mathsf{30}\ }$ ③

対象とするパソコン、調査する対策、計測の順序をランダムに決めているので③が最も適切である。
(①②はパソコンの購入時期の影響を受ける。④⑤は固有のパソコンの性能と対策の順番の影響を受ける。)

[2]

$\boxed{ \ \mathsf{31}\ }$ ②

対策の平方和(水準間平方和)の自由度は対策(水準)の数$-1$なので、$3-1=2$。
誤差の平方和の自由度は総データ数$-$水準の数なので、$12-3=9$。

[3]

$\boxed{ \ \mathsf{32}\ }$ ⑤

水準数$a$、総観測値数$n$の一元配置分散分析において、水準$j$の標本平均及び観測値数を$y_{j\cdot}, n_j$、残差平方和を$S_e$、残差の自由度を$\phi_e$、残差の平均平方を$V_e$とする。
水準$j$の母平均の$100(1-\alpha)\%$信頼区間は$t_{0.05/2}(12-3)=t_{0.025}(9)=2.262$
$$y_{j\cdot}\pm t_{\alpha/2}(\phi_e)\sqrt{\frac{V_e}{n_j}}=y_{j\cdot}\pm t_{\alpha/2}(n-a)\sqrt{\frac{S_e}{(n-a)n_j}}$$
対策$3$の効果の点推定値が$-49.9$なのでこの効果の$95\%$信頼区間
$$\mu-49.9\pm 2.262\times\sqrt{\frac{1890.1}{(12-3)\times4}}=\mu-49.9\pm16.39$$
効果の信頼区間は$[-66.29,-33.51]$となる。


問22 解答

(重回帰モデル,統計ソフトウェアの活用)

※重回帰モデルの統計ソフトウェアによる出力結果の主な項目
$\mathtt{Estimate}$:回帰係数の推定値
$\mathtt{Std.Error}$:回帰係数の推定値の標準誤差
$\mathtt{t\ value}$:$t$値,$\mathtt{Pr(\gt|t|)}$:$P_-$値・・・回帰係数の検定で使う
$\mathtt{Rasidual\ standard\ error}$:誤差項の標準偏差の推定値
$\mathtt{degrees\ of\ freedom}$:自由度
$\mathtt{Multiple\ R-squared}$:決定係数($R^2$)
$\mathtt{Adjusted\ R-squared}$:自由度調整済み決定係数($R^{*2}$)
$\mathtt{F-statistic}$:$F$検定統計量,$\mathtt{p-value}$:$P_-$値・・・回帰の有意性の検定で使う

[1]

$\boxed{ \ \mathsf{33}\ }$ ⑤

$\mathtt{t\ value}$はある説明変数$x_j$は被説明変数$y$の予測に役立たない$iff\ H_0:\beta_j=0$($beta_j$は説明変数$x_j$の回帰係数)とする帰無仮説のもとで、$\hat\beta_j$に基づく$t$統計量の実現値である。回帰係数の推定値の標準誤差を$se(\hat\beta_j)$とすると、$t$統計量の実現値は、$$t=\hat\beta_j/se(\hat\beta_j)\sim t(n-p-1)$$である($n-p-1$は残差の自由度)。
したがって、(ア)の値は$-9.614/3.575=-2.689$

[2]

$\boxed{ \ \mathsf{34}\ }$ ②

① $P_-$値が最も小さい説明変数は$\log($人口密度$)$である。誤り。
② 政令指定都市ダミーの回帰係数が$-0.198$であるので、政令指定都市であれば$1$人あたり社会体育施設数は$e^-0.198=0.82$倍($2$割減)となる。正しい。
③ $15$歳未満人口の割合の$P_-$値は$0.333\ge10\%$なので、帰無仮説は棄却できない。誤り。
④ $log(1$人当たり所得$)$の回帰係数が正なので、$1$人当たり所得が低ければ、$1$人あたり社会体育施設数は少なくなる傾向にある。誤り。
⑤ 統計的に優位性が確認されたとしても、それは説明変数と被説明変数の間に相関関係が見られるということであって、説明変数の被説明変数への因果関係が存在するとは必ずしも言えない。誤り。

[3]

$\boxed{ \ \mathsf{35}\ }$ ④

Ⅰ. $log(1$人当たり所得$)$は、モデルAの結果において有意水準$5\%$で有意でない($P_-$値$\gt0.05$)。誤り。
Ⅱ. 2つのモデルの自由度調整済み決定係数($\mathtt{Adjusted\ R-squared}$)の値を比較すると、モデルBのほうが値が高いので、モデルBのほうがより良いモデルである。正しい。
Ⅲ. 2つのモデルの$F$検定の$P_-$値を見ると、それぞれ$4.494\times10^{-16}, 2.2\times10^{-16}$未満であり、極めて小さい値であることから、説明変数にかかるすべての係数がゼロであるという帰無仮説は棄却される。正しい。



統計検定2級問題解説 ~2021年6月実施~ (問1~問12)

過去問題

過去問題は統計検定公式問題集が問題と解答例を公開しています。こちらを参照してください。


問1 解答

(歪度)

$\boxed{ \ \mathsf{1}\ }$ ①

歪度は,右に裾が長い分布では正の値になり,左に裾が長い分布では負の値になる。
問題のグラフは全体的に右に裾の長い分布となっている。


問2 解答

(年次変化率,幾何平均)

$\boxed{ \ \mathsf{2}\ }$ ②

時点(年,月など) $t$の観測値を$y_t$としたとき,
年次変化率 $(y_{t+1}-y_t)/y_t$ または $y_{t+1}/y_t-1$
$t$年$(1950\le{t}\le1954)$の観測値を$y_t$,年次変化率を$r$としたとき,変化率の平均は幾何平均となるので、
$$
\begin{align} 
r&=(y_{1951}/y_{1950}\times y_{1952}/y_{1951}\times y_{1953}/y_{1952}\times y_{1954}/y_{1953})^{1/4}-1\\
&=(y_{1954}/y_{1950})^{1/4}-1\fallingdotseq 0.154=15.4\%
\end{align}
$$
上式から明らかなことは,各年の変化率の幾何平均は
最初年の値を$y_0$,最後年の値を$y_t$,期間を$t$とすると $\left({y_t}/{y_0}\right)^{1/t}$ で求められる。


問3 解答

(価格指数)

$\boxed{ \ \mathsf{3}\ }$ ②

主な物価指数(デフレータ
・ラスパイレス物価指数…基準年の購入量や取引量等を重みとして算出した価格指数。
品目$i$の基準年価格$=p_{oi}$,基準年数量$=q_{oi}$,比較年価格$=p_{ti}$として$$P_L=\frac{\sum_ip_{ti}q_{0i}}{\sum_ip_{0i}q_{0i}}$$
・パーシェ物価指数…比較年の購入量や取引量等を重みとして算出した価格指数。
品目$i$の基準年価格$=p_{oi}$,比較年数量$=q_{ti}$,比較年価格$=p_{ti}$として$$P_P=\frac{\sum_ip_{ti}q_{ti}}{\sum_ip_{0i}q_{ti}}$$
・フィッシャー物価指数…ラスパイレス指数とパーシェ指数の幾何平均で求められる価格指数。$$P_F=\sqrt{P_L\times P_P}$$

問題は比較年のパーシェ指数を求めるので(基準年を$100$とする)、$$P_P=\frac{80\times80+90\times70}{78\times80+84\times70}\times100=104.8$$


問4 解答

(時系列データの指数化)

[1]

$\boxed{ \ \mathsf{4}\ }$ ③

東京都の$2019$年の新聞発行部数の指数はグラフから$57$
したがって、$1990$年から$2019$年にかけての新聞発行部数は、$1990$年を$100$として$100-57=43$減少したことになる。よって、減少部数は
 $5,190$万部$\times 13\%\times 43/100\fallingdotseq 290$万部

[2]

$\boxed{ \ \mathsf{5}\ }$ ①

問題にある前年比増加率の定義から、前年から減少している場合、増加率は負の値となる。
発行部数指数のグラフを見ると、$2005$年以降は東京都、鳥取県ともに毎年減少している。このことから、前年比増加率のグラフも$2005$年以降は両都県ともに負の値となっている必要がある。これを満たすグラフは①のみである。
(②は鳥取県の$2013$年、④は東京都の$2008$年、⑤は東京都の$2006$年でそれぞれ正の値をとっている。)


問5 解答

(散布図,相関係数,共分散)

[1]

$\boxed{ \ \mathsf{6}\ }$ ⑤

Ⅰ.散布図から、飛型点のとりうる範囲に比べ、飛距離点の取りうる範囲のほうが大きいく、ばらつきが大きいので、飛距離点のほうが分散が大きくなる。正しい。
Ⅱ.2つの散布図を比較すると、飛距離点と飛型点の散布図のほうがプロットされた点が直線状に分布しているので相関が強く、相関係数も高くなる。正しい。
Ⅲ.飛距離点と飛型点の散布図に回帰直線をあてはめると、明らかに$y$切片は正の値をとる。正しい。

[2]

$\boxed{ \ \mathsf{7}\ }$ ④

飛距離点の定義から、飛距離$x$は飛距離点$y$の$1/2$に比例する($x=y/2+68$)。
このとき、飛距離の分散は飛距離点の分散の$1/4$,標準偏差は$1/2$になる。
共分散は,2つのデータの平均からの偏差の積の和なので,片方のデータの平均からの偏差が$1/2$倍となれば,$1/2$倍となる。
相関係数は、共分散をそれぞれの標準偏差で割ったものだから、飛距離と飛型点の相関係数は飛距離点と飛型点の相関係数と等しくなる。


問6 解答

(相関係数,共分散)

$\boxed{ \ \mathsf{8}\ }$ ③

共分散$$\begin{align}s_{xy}&=\frac1{10}\sum_{i=1}^{10}(x_i-\bar{x})(y_i-\bar{y})\\&=\frac1{10}\sum_{i=1}^{10}x_iy_i-\frac1{10}\sum_{i=1}^{10}x_i\bar{y}-\frac1{10}\sum_{i=1}^{10}\bar{x}y_i+\frac1{10}\sum_{i=1}^{10}\bar{x}\bar{y}\\&=\frac1{10}\sum_{i=1}^{10}x_iy_i-\bar{x}\bar{y}\\&=\frac1{10}\sum_{i=1}^{10}x_iy_i-\frac1{10}\sum_{i=1}^{10}x_i\times\frac1{10}\sum_{i=1}^{10}y_i\\&= \frac1{10} \times4548.7-\frac1{10}\times346.3\times\frac1{10}\times121.8=33.08\end{align}$$
標準偏差$$\sigma_x=\sqrt{\frac{10-1}{10}s_x^2}=\sqrt{\frac{9}{10}\times167.4}=12.27$$$$\sigma_y=\sqrt{\frac{10-1}{10}s_y^2}=\sqrt{\frac{9}{10}\times11.6}=3.23$$
よって、相関係数は$$r=\frac{s_{xy}}{\sigma_x\sigma_y}=\frac{33.08}{12.27\times3.23}=0.83$$


問7 解答

(標本抽出法)

$\boxed{ \ \mathsf{9}\ }$ ④

多段抽出法・・・母集団をいくつかのグループ(第1段抽出単位)に分け,そこから無作為抽出でいくつかグループを選び,さらにその中から無作為抽出でいくつかのグループ(第2段抽出単位)を選び・・を何段か繰り返してそこから標本を無作為に抽出する。
層化抽出法・・・母集団をあらかじめいくつかの層(グループ)に分けておき、各層の中から必要な数の調査対象を無作為に抽出する方法。
集落(クラスター)抽出法・・・母集団を小集団であるクラスター(集落)に分け,その中からいくつかのクラスターを無作為に抽出し,それぞれのクラスターにおいて全数調査を行う。


問8 解答

(同時確率関数と相関係数)

$\boxed{ \ \mathsf{10}\ }$ ⑤

まず、$X, Y$の周辺分布を求める。
$\begin{align}
P(X=-1)=P(X=1)&=0+1/4+0=1/4\\
P(X=0)&=1/4+0+1/4=1/2\\
P(Y=-1)=P(Y=1)&=0+1/4+0=1/4\\
P(Y=0)&=1/4+0+1/4=1/2
\end{align}$
これらから$X^2,Y^2$の期待値$E[X^2],E[Y^2]$、分散$V[X^2],V[Y^2]$及び$X^2$と$Y^2$の共分散$Cov(X^2,Y^2)$、相関係数$r$を求める。
$$\begin{align}
E[X^2]&= (-1)^2\times P(X=-1)+0^2\times P(X=0)+1^2\times P(X=1)\\
&=1/4+0+1/4=1/2=\mu_{X^2}\\
E[Y^2]&= (-1)^2\times P(Y=-1)+0^2\times P(Y=0)+1^2\times P(Y=1)\\
&=1/4+0+1/4=1/2=\mu_{Y^2}\\
V[X^2]&=E[(X^2-\mu_{X^2})^2]\\
&=\{(-1)^2-1/2\}^2\times P(X=-1)+(0^2-1/2)^2\times P(X=0)+(1^2-1/2)^2\times P(X=1)\\
&=1/16+1/8+1/16=1/4\\
V[Y^2]&=E[(Y^2-\mu_{Y^2})^2]\\
&={(-1)^2-1/2}^2\times P(Y=-1)+(0^2-1/2)^2\times P(Y=0)+(1^2-1/2)^2\times P(Y=1)\\
&=1/16+1/8+1/16=1/4\\
Cov[X^2,Y^2]&=E[(X^2-\mu_{X^2})(Y^2-\mu_{Y^2})\\
&={(-1)^2-1/2}\times{(-1)^2-1/2}\times P(X=-1,Y=-1)\\
&+{(-1)^2-1/2}\times(0^2-1/2)\times P(X=-1,Y=0)\\
&+{(-1)^2-1/2}\times(1^2-1/2)\times P(X=-1,Y=1)\\
&+(0^2-1/2)\times{(-1)^2-1/2}\times P(X=0,Y=-1)\\
&+(0^2-1/2)\times(0^2-1/2)\times P(X=0,Y=0)\\
&+(0^2-1/2)\times(1^2-1/2)\times P(X=0,Y=1)\\
&+(1^2-1/2)\times{(-1)^2-1/2}\times P(X=1,Y=-1)\\
&+(1^2-1/2)\times(0^2-1/2)\times P(X=1,Y=0)\\
&+(1^2-1/2)\times(1^2-1/2)\times P(X=1,Y=1)\\
&=0-1/16+0-1/16+0-1/16+0-1/16+0=-1/4\\
\therefore r&=\frac{Cov[X^2,Y^2]}{\sqrt{V[X^2]V[Y^2]}}=\frac{-1/4}{\sqrt{1/4\times1/4}}=-1
\end{align}$$
また
$P(X^2=0,Y^2=0)=P(X=0,Y=0)=0$
$P(X^2=0)=P(X=0)=1/2, P(Y^2=0)=P(Y=0)=1/2$
であることから
$P(X^2=0,Y^2=0)\neq P(X^2=0)P(Y^2=0)$
となり、$P(X^2\cap Y^2)=P(X^2)P(Y^2)$が成り立たないため、$X^2$と$Y^2$は互いに独立ではない。


問9 解答

(非復元抽出の確率)

$\boxed{ \ \mathsf{11}\ }$ ⑤

無作為に集められた$25$人の中に同じ誕生日の人が存在する確率を求めるためには、同じ誕生日の人が全くいない確率を求めて$1$から引けばよい。
同じ誕生日がないということなので、$365$日から重複を許さずに$25$日を抽出する確率を求める。
$$\underbrace{\frac{365}{365}\times\frac{364}{365}\times\frac{363}{365}\times\cdots\times\frac{341}{365}}_{25}=\frac1{365^{25}}\times\frac{365!}{340!}$$
よって、同じ誕生日の人が存在する確率は
$$1-\frac{365!}{365^{25}\times340!}$$


問10 解答

(正規分布、標準正規分布)

$\boxed{ \ \mathsf{12}\ }$ ④

確率変数$X$が正規分布$N(60,9^2)$に従うとき、$$Z=\frac{X-60}{9}$$は標準正規分布$N(0,1)$に従う。そこで、
$$P(X\le c)=0.011\iff P(Z\le \frac{c-60}{9})=0.011$$
「標準正規分布の上側確率」の表から$P(X\ge2.29)=0.011$なので、$P(X\le-2.29)=0.011$、$$\begin{align}\therefore \frac{c-60}{9}&=-2.29\\c&=39.39\end{align}$$


問11 解答

(連続型確率変数)

[1]

$\boxed{ \ \mathsf{13}\ }$ ①

$P(X\gt 1)=1-P(X\le 1)=1-F(1)=1-1=0$

[2]

$\boxed{ \ \mathsf{14}\ }$ ③

確率密度関数$f(x)$は累積分布関数$F(x)$を微分して求める。
$$\begin{eqnarray}
f(x)=\frac{d}{dx}F(x)=
\begin{cases}
1&(0\ge x\lt 1)\\
0&(x\lt 0,\ 1\ge x)
\end{cases}
\end{eqnarray}$$
期待値$E(X)$は、
$$E(X)=\int_{-\infty}^\infty xf(x)dx=\int_0^1 x\cdot1dx=\left[\frac{1}{2}x^2\right]_0^1=\frac{1}{2}$$


問12 解答

(幾何分布、チェビシェフの不等式)

[1]

$\boxed{ \ \mathsf{15}\ }$ ③

幾何分布$P(X=x)=p(1-p)^{x-1}$の期待値(平均)は$1/p$
$$\therefore\ P(X)=\frac13\left(\frac23\right)^{n-1}\ \Rightarrow\ E(X)=\frac1{1/3}=3$$

※成功か失敗しかない試行をベルヌーイ試行という。成功確率は $p$。
このベルヌーイ試行を独立に何回も行うとき,初めて成功するまでに“試行”した回数を $X$ とすると,$X$ の確率関数は$$P(X=x)=p(1-p)^{x-1}$$となり,この確率分布をパラメータ $p$ の幾何分布という。(本によっては,初めて成功するまでに“失敗”した回数を $X$ とする定義の仕方もある。)
ここで,等比級数の和$$\displaystyle \sum_{x=0}^\infty a^x=\frac1{1-a}\ \ \ (|a|<1)$$の両辺を $a$ で微分すると$$\displaystyle \sum_{x=0}^\infty xa^{x-1}=\frac1{(1-a)^2}$$さらに,この式の両辺を $a$ で微分すると,$$\displaystyle \sum_{x=0}^\infty x(x-1)a^{x-2}=\frac2{(1-a)^3}$$となる。これを利用して,幾何分布の期待値と分散を求める。$$\begin{align}E[X]=&\sum_{x=0}^\infty xp(1-p)^{x-1}=p\sum_{x=0}^\infty x(1-p)^{x-1}\\=&\frac{p}{\{1-(1-p)\}^2}=\frac1p\\V[X]=&E[X(X-1)]+E[X]-E[X]^2\\=&\sum_{x=0}^\infty x(x-1)p(1-p)^{x-1}+\frac1p-\frac1{p^2}\\=&p(1-p)\sum_{x=0}^\infty x(x-1)(1-p)^{x-2}+\frac1p-\frac1{p^2}\\=&\frac{2p(1-p)}{\{1-(1-p)\}^3}+\frac1p-\frac1{p^2}\\=&\frac{2-2p}{p^2}+\frac{p}{p^2}-\frac1{p^2}=\frac{1-p}{p^2}\\\end{align}$$

[2]

$\boxed{ \ \mathsf{16}\ }$ ④

期待値$E[X]$、分散$V[X]$を持つ確率分布に従う確率変数$X$について、任意の$\epsilon\gt 0$に対して、チェビシェフの不等式$$P(|X-E[X]|\ge\epsilon)\le V[X]/\epsilon^2$$が成り立つ。
また、母平均$\mu=3$、母分散$\sigma^2=6$の母集団から抽出した標本$X_1,\cdots,X_n$の標本平均$\displaystyle\bar{X}=\frac1n\sum_{i=1}^nX_i$の期待値と分散は
$$\begin{eqnarray}E[\bar{X}]=E\left[\frac1n\sum_{i=1}^nX_i\right]=\frac1n\sum_{i=1}^nE[X_i]=\frac{n\mu}n=\mu=3\\V[\bar{X}]=V\left[\frac1n\sum_{i=1}^nX_i\right]=\frac1{n^2}\sum_{i=1}^nV[X_i]=\frac{n\sigma^2}{n^2}=\frac{\sigma^2}{n}=\frac{6}{n}\end{eqnarray}$$
これをチェビシェフの不等式に当てはめると
$$P(|X-3|\ge\epsilon)\le\frac{6/n}{\epsilon^2}$$


https://t.co/tgBHBzOmbf

推測統計フローチャート(推定、検定を考えるにあたっての解法の整理)

中心極限定理などに基づいて母集団の確率分布のパラメータの点推定・区間推定や、パラメータに関する仮説の検定を行う推測統計は、基本的な考え方は一貫している一方で推定の対象や分散の既知・未知などに置ける場合分けなど、関連する概念が多くわかりにくい。
そのため当稿では解法の整理の補助となるように、推測統計に関連するトピックをフローチャートの形式にまとめる。作成にあたっては、「基礎統計学Ⅰ 統計学入門(東京大学出版会)」の9章〜12章を主に参考にした。

大枠の整理

推測統計を考える際の前提

推測統計を考える際に前提となるのが母集団(population)と標本(sample)である。記述統計学(descriptive statistics)では得られた標本についてのみ考えるが、得られた標本の裏側の母集団についても考察を行うのが推測統計である。

推測統計では母集団の持つ分布である、母集団分布(population distribution)について知ることが目的となる。母集団分布を考えるにあたっては、事象に対して基本的には理論的・経験的に正規分布やポアソン分布などの確率分布をあてはめることができるとされることが多い。正規分布やポアソン分布を母集団分布に仮定できる場合、正規分布の$\mu$や$\sigma^2$、二項分布の$p$、ポアソン分布の$\lambda$のようにいくつかの確率分布のパラメータさえわかれば母集団分布について全て知ることができる。統計的推測(statistical inference)ではこのパラメータを母数(parameter)と呼び、母数の推測が推測統計の目的となる。

よって、推測統計では母集団分布が正規分布の際の$\mu$や$\sigma^2$などが推測の対象となる。

フローチャート

推測統計の手法を用いる際のフローチャートは概ね上記のようになる。書籍などで確認するとトピックが多く大変だが、このように図で整理することでパターンの把握が容易になるのではと思われる。
どの問題もまず最初に推測の対象を考えるとよく、基本的には「母平均」、「母分散」、「その他」で把握しておくと良い。

以下、フローチャートに対応させつつそれぞれのパターンについて確認する。区間推定、検定のどちらも考え方自体はそれほど変わらないため、ここでは区間推定を元に考えることとする。また、全てを同時に抑えるのは大変なので、発展項目と思われるものについては*をつけた。

上側確率について

区間推定や検定を行う際に、確率密度関数の変数$x$の位置とその位置における積分値の対応を考える際に、$\alpha$を導入して考えることが多い。たとえば区間推定を行う際に、母集団分布の母数$\theta$が$L \leq \theta \leq U$のように$L$(lower confidence limit)、$U$(upper confidence limit)を用いて表せると考えると、確率分布と$\alpha$、$L$、$U$の関係は下記のようになる。
$$
\begin{align}
P(L \leq \theta \leq U) = 1 – \alpha
\end{align}
$$
上記が基本的な$\alpha$の考え方であり、標準正規分布表や$t$分布表、$\chi^2$分布の表などと見比べて区間推定や検定を行う。一方で、この際に、表の読み取りの際に$\alpha/2$などが出てきてわかりにくくなるケースがある。

このような状況を防ぐにあたって、「$XX$分布において上側確率が$100\alpha$%となるパーセント点に対応する$XX$の値を$XX_{\alpha}$とする」と表記し、5%区間を考えるにあたっては上側確率が2.5%の際は$XX_{\alpha=0.025}$のように、$\alpha/2$ではなく$\alpha=0.025$のように数値を変更する形式で表す方が取り扱いやすいと思われる。また、$x=0$を中心とする左右対称の確率分布の場合は$XX_{\alpha=0.975}=-XX_{\alpha=0.025}<0$であることも抑えておくと良い。これは標準正規分布と$t$分布に当てはまる。

母平均の区間推定(母分散既知)

標本数を$n$、標本平均を$\bar{x}$、母平均を$\mu$、母分散を$\sigma^2$とする。
$$
\begin{align}
z = \frac{\bar{x}-\mu}{\sigma/\sqrt{n}}
\end{align}
$$
上記のように$z$を計算したとき、$z$は平均を引いたのちに標準偏差で割っているので標準化されたと考えることができる。よって$z$は標準正規分布$N(0,1)$に従うと考えることができる。

これにより、$z$値を標準正規分布と見比べることで区間推定を行うことができる。母平均$\mu$の95%区間を考えるにあたって、対応する標準正規分布の区間が$z_{\alpha=0.975} \leq z \leq z_{\alpha=0.025}$のように表せるとする。ここで正規分布表より、$z_{\alpha=0.975}=-1.96$、$z_{\alpha=0.025}=1.96$を満たすことが読み取れる。このとき、下記の式変形によって$\mu$の95%区間を求めることができる。
$$
\begin{align}
z_{\alpha=0.975} \leq &z \leq z_{\alpha=0.025} \\
z_{\alpha=0.975} \leq &\frac{\bar{x}-\mu}{\sigma/\sqrt{n}} \leq z_{\alpha=0.025} \\
z_{\alpha=0.975}\frac{\sigma}{\sqrt{n}} \leq &\bar{x}-\mu \leq z_{\alpha=0.025}\frac{\sigma}{\sqrt{n}} \\
-z_{\alpha=0.025}\frac{\sigma}{\sqrt{n}} \leq &\mu-\bar{x} \leq -z_{\alpha=0.975}\frac{\sigma}{\sqrt{n}} \\
\bar{x}-z_{\alpha=0.025}\frac{\sigma}{\sqrt{n}} \leq &\mu \leq \bar{x}-z_{\alpha=0.975}\frac{\sigma}{\sqrt{n}} \\
\bar{x}-1.96\frac{\sigma}{\sqrt{n}} \leq &\mu \leq \bar{x}+1.96\frac{\sigma}{\sqrt{n}}
\end{align}
$$

母平均の区間推定(母分散未知)

標本数を$n$、標本平均を$\bar{x}$、母平均を$\mu$、標本分散を$s^2$とする。
$$
\begin{align}
t = \frac{\bar{x}-\mu}{s/\sqrt{n}}
\end{align}
$$
上記のように$t$を計算したとき、$t$はt分布$t(n-1)$に従うと考えることができる。

これにより、$t$値をt分布$t(n-1)$と見比べることで区間推定を行うことができる。母平均$\mu$の95%区間を考えるにあたって、対応する$t$分布の区間が$t_{\alpha=0.975}(n-1) \leq t \leq t_{\alpha=0.025}(n-1)$のように表せるとする。ここで$n=10$の際はt分布の表より、$t_{\alpha=0.025}(10-1)=t_{\alpha=0.025}(9)=2.262$、$t_{\alpha=0.975}(10-1)=-t_{\alpha=0.025}(9)=-2.262$を満たすことが読み取れる。このとき、下記の式変形によって$\mu$の95%区間を求めることができる。
$$
\begin{align}
t_{\alpha=0.975}(9) \leq &t \leq t_{\alpha=0.025}(9) \\
t_{\alpha=0.975}(9) \leq &\frac{\bar{x}-\mu}{s/\sqrt{n}} \leq t_{\alpha=0.025}(9) \\
t_{\alpha=0.975}(9)\frac{s}{\sqrt{n}} \leq &\bar{x}-\mu \leq t_{\alpha=0.025}(9)\frac{s}{\sqrt{n}} \\
-t_{\alpha=0.025}(9)\frac{s}{\sqrt{n}} \leq &\mu-\bar{x} \leq -t_{\alpha=0.975}(9)\frac{s}{\sqrt{n}} \\
\bar{x}-t_{\alpha=0.025}(9)\frac{s}{\sqrt{n}} \leq &\mu \leq \bar{x}+t_{\alpha=0.025}(9)\frac{s}{\sqrt{n}} \\
\bar{x}-2.262\frac{s}{\sqrt{n}} \leq &\mu \leq \bar{x}+2.262\frac{s}{\sqrt{n}}
\end{align}
$$
サンプル数が多くなるにつれて$t$分布は正規分布に近づく。一方で、サンプル数が少ない際は母分散既知の場合に比較して95%区間は大きくなる。このことは「母分散がわからない方が母集団の不確実性が大きい」と直感的に解釈しておくと良いと思われる。

母分散の区間推定

標本数を$n$、母分散を$\sigma^2$、標本分散を$s^2$とする。
$$
\begin{align}
\chi^2 = \frac{(n-1)s^2}{\sigma^2}
\end{align}
$$
上記のように$\chi^2$を計算したとき、$t$は$\chi^2$分布$\chi^2(n-1)$に従うと考えることができる。これにより、$\chi^2$値を$\chi^2$分布$\chi^2(n-1)$と見比べることで区間推定を行うことができる。

ここで$\chi^2$分布において上側確率が$100\alpha$%となるパーセント点に対応する$\chi^2$の値を$\chi^2_{\alpha}$とする。このとき母分散$\sigma^2$の95%区間は、$\chi^2_{\alpha=0.975}(n-1) \leq \chi^2 \leq \chi^2_{\alpha=0.025}(n-1)$のように表せる。ここで$n=10$の際は$\chi^2$分布の表より、$\chi^2_{\alpha=0.975}(10-1)=\chi^2_{\alpha=0.975}(9)=2.70039$、$\chi^2_{\alpha=0.025}(10-1)=\chi^2_{\alpha=0.025}(9)=19.0228$を満たすことが読み取れる。このとき、下記の式変形によって$\sigma^2$の95%区間を求めることができる。
$$
\begin{align}
\chi^2_{\alpha=0.975}(9) \leq &\chi^2 \leq \chi^2_{\alpha=0.025}(9) \\
\chi^2_{\alpha=0.975}(9) \leq &\frac{(n-1)s^2}{\sigma^2} \leq \chi^2_{\alpha=0.025}(9) \\
\frac{1}{\chi^2_{\alpha=0.025}(9)} \leq &\frac{\sigma^2}{(n-1)s^2} \leq \frac{1}{\chi^2_{\alpha=0.975}(9)} \\
\frac{(n-1)s^2}{\chi^2_{\alpha=0.025}(9)} \leq &\sigma^2 \leq \frac{(n-1)s^2}{\chi^2_{\alpha=0.975}(9)} \\
\frac{9s^2}{19.0228} \leq &\sigma^2 \leq \frac{9s^2}{2.70039}
\end{align}
$$

母平均の差の区間推定(母分散が未知だが等しいと仮定)

母集団分布を$N(\mu_1, \sigma^2)$と$N(\mu_2, \sigma^2)$で表すことのできる母分散の等しい二つの正規母集団から個別に標本$X_1, X_2, …, X_m$と$Y_1, Y_2, …, Y_n$を抽出した際の母平均の差$\mu_1-\mu_2$の区間推定について考える。このとき不偏分散を$s^2$とすると$s^2$は下記のように計算できる。
$$
\begin{align}
s^2 = \frac{1}{m+n-2} \left( \sum_{j=1}^{m}(X_i-\bar{X})^2 + \sum_{j=1}^{n}(Y_i-\bar{Y})^2 \right)
\end{align}
$$
ここで下記のように$t$値を計算する。
$$
\begin{align}
t = \frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{s \sqrt{1/m+1/n}}
\end{align}
$$
このとき上記は自由度$m+n-2$の$t$分布$t(m+n-2)$に従うため、$t(m+n-2)$見比べることで区間推定を行うことができる。母平均の差$\mu_1-\mu_2$の95%区間を考えるにあたって、対応する$t$分布$t(m+n-2)$の区間が$t_{\alpha=0.975}(m+n-2) \leq t \leq t_{\alpha=0.025}(m+n-2)$のように表せるとする。ここで$m=10$、$n=10$の際は$t$分布の表より、$t_{\alpha=0.975}(10+10-2)=-t_{\alpha=0.025}(18)=-2.101$、$t_{\alpha=0.025}(10+10-2)=t_{\alpha=0.025}(18)=2.101$を満たすことが読み取れる。このとき、下記の式変形によって$\mu_1-\mu_2$の95%区間を求めることができる。
$$
\begin{align}
t_{\alpha=0.975}(18) \leq &t \leq t_{\alpha=0.025}(18) \\
t_{\alpha=0.975}(18) \leq &\frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{s \sqrt{1/m+1/n}} \leq t_{\alpha=0.025}(18) \\
-t_{\alpha=0.025}(18) \leq &\frac{(\mu_1-\mu_2)-(\bar{X}-\bar{Y})}{s \sqrt{1/m+1/n}} \leq -t_{\alpha=0.975}(18) \\
-t_{\alpha=0.025}(18)s \sqrt{1/m+1/n} \leq &(\mu_1-\mu_2)-(\bar{X}-\bar{Y}) \leq -t_{\alpha=0.975}(18)s \sqrt{1/m+1/n} \\
(\bar{X}-\bar{Y})-t_{\alpha=0.025}(18)s \sqrt{1/m+1/n} \leq &(\mu_1-\mu_2) \leq (\bar{X}-\bar{Y})+t_{\alpha=0.025}(18)s \sqrt{1/m+1/n} \\
(\bar{X}-\bar{Y})-2.101s \sqrt{1/10+1/10} \leq &(\mu_1-\mu_2) \leq (\bar{X}-\bar{Y})+2.101s \sqrt{1/10+1/10} \\
(\bar{X}-\bar{Y})-\frac{2.101s}{\sqrt{5}} \leq &(\mu_1-\mu_2) \leq (\bar{X}-\bar{Y})+\frac{2.101s}{\sqrt{5}}
\end{align}
$$

母平均の差の区間推定(母分散が未知であるかつ等しいと仮定できない)*

二つの母分散が等しいと仮定できない場合の母平均の差の場合は、下記のように集団ごとに不偏分散を計算する。
$$
\begin{align}
s_1^2 &= \frac{1}{m-1} \sum_{j=1}^{m}(X_i-\bar{X})^2 \\
s_2^2 &= \frac{1}{n-1} \sum_{j=1}^{n}(Y_i-\bar{Y})^2
\end{align}
$$
上記のようにそれぞれの集団の不偏分散を計算したのちにウェルチの近似法を用いて$t$値を計算する。
$$
\begin{align}
t = \frac{(\bar{X}-\bar{Y}) – (\mu_1-\mu_2)}{\sqrt{s_1^2/m + s_2^2/n}}
\end{align}
$$
このとき下記のように$\nu$を計算する。
$$
\begin{align}
\nu = \frac{(s_1^2/m + s_2^2/n)^2}{\frac{(s_1^2/m)^2}{m-1} + \frac{(s_2^2/n)^2}{n-1}}
\end{align}
$$
ここで$\nu$に一番近い整数を$\nu’$とすると前述のように計算した$t$値は自由度$\nu’$の$t$分布$t(\nu’)$に近似的に従う。

このとき$\mu_1-\mu_2$の95%区間はこれまでと同様に求めることができる。
$$
\begin{align}
t_{\alpha=0.975}(\nu’) \leq &t \leq t_{\alpha=0.025}(\nu’) \\
(\bar{X}-\bar{Y})-t_{\alpha=0.025}(\nu’)\sqrt{s_1^2/m + s_2^2/n} \leq &(\mu_1-\mu_2) \leq (\bar{X}-\bar{Y})+t_{\alpha=0.025}(\nu’)\sqrt{s_1^2/m + s_2^2/n}
\end{align}
$$
他と比較しても式が複雑なので途中計算は省略した。

母分散の比の区間推定 *

二つの集団のサンプル数を$m$、$n$、母分散を$\sigma_1^2$、$\sigma_2^2$とし、不偏標本分散を$s_1^2$、$s_2^2$とする。
$$
\begin{align}
F = \frac{\sigma_2^2 s_1^2}{\sigma_1^2 s_2^2}
\end{align}
$$

このとき上記のように$F$値を定義すると$F$値は自由度$(m-1,n-1)$の$F$分布$F(m-1,n-1)$に従う。この導出にあたっての詳細は省略したが「基礎統計学Ⅰ 統計学入門(赤本)」の10.5.2節の記載が参考になる。

さて、このとき$\displaystyle \frac{\sigma_2^2}{\sigma_1^2}$の95%区間を求める。
$$
\begin{align}
F_{\alpha=0.975}(m-1,n-1) \leq &F \leq F_{\alpha=0.025}(m-1,n-1) \\
F_{\alpha=0.975}(m-1,n-1) \leq &\frac{\sigma_2^2 s_1^2}{\sigma_1^2 s_2^2} \leq F_{\alpha=0.025}(m-1,n-1) \\
F_{\alpha=0.975}(m-1,n-1)\frac{s_2^2}{s_1^2} \leq &\frac{\sigma_2^2}{\sigma_1^2} \leq F_{\alpha=0.025}(m-1,n-1)\frac{s_2^2}{s_1^2}
\end{align}
$$
負の値や逆数を取るなどの不等号が反転する演算を行っていないことに注意しておくとよい。不等号の反転がある場合の計算がややこしい場合は不等号を一つずつ計算する方がミスが減らせるので、わからなくなったら一つずつ計算する方が良いと思われる。

母比率の区間推定(二項分布)

サンプル数$n$、母比率$p$の二項分布$Binom(n,p)$に従う確率変数$X$の母平均は$np$、母分散は$np(1-p)$と表すことができる。
https://www.hello-statisticians.com/explain-books-cat/toukeigakunyuumon-akahon/ch6_practice.html#61
$$
\begin{align}
z = \frac{X-np}{\sqrt{np(1-p)}}
\end{align}
$$
このとき中心極限定理に基づいて、上記が従う分布は標準正規分布で近似できる。よって、$z$値を標準正規分布と見比べることで区間推定を行うことができる。母比率$p$の95%区間を考えるにあたって、対応する標準正規分布の区間が$z_{\alpha=0.975} \leq z \leq z_{\alpha=0.025}$のように表せるとする。ここで正規分布表より、$z_{\alpha=0.975}=-1.96$、$z_{\alpha=0.025}=1.96$を満たすことが読み取れる。このとき、下記の式変形によって$p$の95%区間を求めることができる。
$$
\begin{align}
z_{\alpha=0.975} \leq &z \leq z_{\alpha=0.025} \\
z_{\alpha=0.975} \leq &\frac{X-np}{\sqrt{np(1-p)}} \leq z_{\alpha=0.025} \\
-z_{\alpha=0.025} \leq &\frac{p-X/n}{\sqrt{p(1-p)/n}} \leq -z_{\alpha=0.975} \\
-z_{\alpha=0.025} \leq &\frac{p-\hat{p}}{\sqrt{p(1-p)/n}} \leq -z_{\alpha=0.975} \\
-z_{\alpha=0.025}\sqrt{p(1-p)/n} \leq &p-\hat{p} \leq -z_{\alpha=0.975}\sqrt{p(1-p)/n} \\
\hat{p}-z_{\alpha=0.025}\sqrt{p(1-p)/n} \leq &p \leq \hat{p}+z_{\alpha=0.025}\sqrt{p(1-p)/n} \\
\hat{p}-1.96\sqrt{p(1-p)/n} \leq &p \leq \hat{p}+1.96\sqrt{p(1-p)/n}
\end{align}
$$
「基礎統計学Ⅰ 統計学入門」の11.5.3の議論により、「$n$が大きい場合大数の法則に基づいて、不等号の一番左と右の式における$p$は$\hat{p}$で近似できる」と考えることができる。よって、95%区間は下記のように近似することができる。
$$
\begin{align}
\hat{p}-1.96\sqrt{\hat{p}(1-\hat{p})/n} \leq p \leq \hat{p}+1.96\sqrt{\hat{p}(1-\hat{p})/n}
\end{align}
$$

母比率の区間推定(ポアソン分布)

解法の整理

区間推定

点推定

検定

まとめ

問題演習(基礎統計学Ⅰ)

https://www.hello-statisticians.com/explain-books-cat/toukeigakunyuumon-akahon/ch10_practice.html
https://www.hello-statisticians.com/explain-books-cat/toukeigakunyuumon-akahon/ch11_practice.html
https://www.hello-statisticians.com/explain-books-cat/toukeigakunyuumon-akahon/ch12_practice.html

Ch.9 「定積分」の演習問題の解答例 〜統計学のための数学入門30講(朝倉書店)〜

当記事は「統計学のための数学入門$30$講(朝倉書店)」の読解サポートにあたってChapter.$9$の「定積分」の章末問題の解答の作成を行いました。
基本的には書籍の購入者向けの解説なので、まだ入手されていない方は購入の上ご確認ください。また、解説はあくまでサイト運営者が独自に作成したものであり、書籍の公式ページではないことにご注意ください。

・書籍解答まとめ
https://www.hello-statisticians.com/answer_textbook_math#math_stat

本章のまとめ

演習問題解答

問題$9.1$

・$[1]$
$f(x)=e^{-2x}$の原始関数を$F(x)$とおくと$F'(x)=f(x)$が成立する。このとき、下記のように考えることができる。
$$
\large
\begin{align}
\frac{d}{dx} \int_{a}^{x} e^{-2t} dt &= \frac{d}{dx} \int_{a}^{x} f(t) dt \\
&= \frac{d}{dx} (F(x) – F(a)) \\
&= f(x) = e^{-2x}
\end{align}
$$

・$[2]$
$f(x)=e^{-2x}-7x$の原始関数を$F(x)$とおくと$F'(x)=f(x)$が成立する。このとき、下記のように考えることができる。
$$
\large
\begin{align}
\frac{d}{dx} \int_{a}^{x^2} (e^{-2t}-7t) dt &= \frac{d}{dx} \int_{a}^{x^2} f(t) dt \\
&= \frac{d}{dx} (F(x^2) – F(a)) \\
&= f(x^2) \times (x^2)’ = 2x (e^{-2x^2}-7x^2)
\end{align}
$$

問題$9.2$

統計検定準1級 問題解説 ~2017年6月実施 選択問題及び部分記述問題 問10~

過去問題

過去問題は統計検定公式が問題と解答例を公開しています。こちらを参照してください。

解答

[1] 解答

(1) $\boxed{ \ \mathsf{12}\ }$ : ③

男性の就業者数の期待度数を$x$,女性の就業者数の期待度数を$y$ とすると,次の表を得る.

$$
\begin{array}{cccc}
& 就業者 & 非就業者 & 計 \\
\hline
\text{男} & x   & 41-x & 41 &  \\
\hline
\text{女} & y   & 3-y & 39 &  \\
\hline
\text{計} & 68  & 12   & 80 &
\hline
\end{array}
$$

また,問題文の条件から$x$,$y$は次を満たせば良い.
$$
   \begin{align}
       \left\{
       \begin{array}{l}
       x+y=68 \\
       \dfrac{x}{41} = \dfrac{y}{39}
       \end{array}
       \right.
   \end{align}
$$

これを解いて,

   \[
       y = \dfrac{39\times 68}{80} = 33.15   
   \]

を得る.

(2) $\boxed{ \ \mathsf{13}\ }$ : ③

イエーツの補正をした$\chi^2$統計量を$\chi^2$と表すことにすると,
   \[
       \chi^2 = \dfrac{80(|39\cdot9 – 3\cdot30|-80/2)^2}{41\cdot 39 \cdot 68 \cdot 12} \approx 2.76  
   \]

である.ここで,自由度1の$\chi^2$分布について,上側$1\%$点 は$6.63$,上側$5\%$点 は$3.84$,上側$10\%$点 は$2.71$,であるから有意水準$1\%$,$5\%$ では棄却されず,$10\%$ では棄却される.

[2] 解答

$\boxed{ \ \mathsf{14}\ }$ : ①

男性で就業者の人数が$x$人になるのは,$38$人から$x$人を選び,それ以外の$42$人から$30-x$人を選ぶ時なので,その確率は

   \[
       \dfrac{_{38}C_{x} \cdot _{42}C_{30-x}}{_{80}C_{30}}
   \]

   である.

統計検定準1級 問題解説 ~2017年6月実施 選択問題及び部分記述問題 問9~

過去問題

過去問題は統計検定公式が問題と解答例を公開しています。こちらを参照してください。

解答

[1] 解答

$\boxed{ \ \mathsf{10}\ }$ : ④

(ア) $V(\bar{X})$において,$n = N/2$として,計算すると,

       \[
         V(\bar{X}) = \dfrac{N-N/2}{N-1}\dfrac{1}{N/2}\sigma^2 = \dfrac{1}{N-1}\sigma^2 
       \]

となり母集団の大きさ$N$に依存するので誤り.

(イ) 母集団を無限母集団とみなした場合の標本平均の分散は$\dfrac{\sigma^2}{n}$ である.$n\geq 1$とすると,$\dfrac{N-n}{N-1} \leq 1$ であるから,$V(\bar{X}) \leq \dfrac{\sigma^2}{n}$となり,正しい.

(ウ) 有限母集団からの復元単純無作為抽出による,標本平均の分散も$\dfrac{\sigma^2}{n}$ であるから正しい.

[2] 解答

$\boxed{ \ \mathsf{11}\ }$ : ①

 $V_1$ は,$N=7270$,$n=800$,$\sigma^2=500$ として,$V(\bar{X})$ を計算すればよい.

\[
       V_1 = \dfrac{7270-800}{7270-1}\dfrac{1}{800}500 = 0.556
\]

$V_2$ は,無限母集団と見なした場合なので,

   \[
       V_2 = \dfrac{500}{800} = 0.625  
   \]

$V(\bar{X})$の導出については「標本平均の分散に対して有限修正(finite correction)を行う際の修正項の導出」の記事を参照.

統計検定準1級 問題解説 ~2017年6月実施 選択問題及び部分記述問題 問8~

過去問題

過去問題は統計検定公式が問題と解答例を公開しています。こちらを参照してください。

解答

[1] 解答

$\boxed{ \ \mathsf{8}\ }$ : ②

$e_t \quad (t=1,\dots,49)$の標本分散は$14497.5$であるから,1次の標本自己相関係数$\hat{\rho}$は

\[
           \hat{\rho} = \dfrac{10299.8}{\sqrt{e_t}\sqrt{e_{t+1}}} = \dfrac{10299.8}{\sqrt{14497.5}\sqrt{14497.5}} \approx 0.710
\]

$\hat{\rho}\approx 0.710$は正で,1に近い(大きい)く,また偏自己相関係数は$2$次以降では有意に$0$に近いため,コレログラム減衰する.したがって(イ)である.

また,ダービン・ワトソン統計量DWの推定値は

       \[
           DW \approx 2(1-\hat{\rho}) = 0.579
       \]

で(選択肢の中で一番近いのは0.61)である(例えば,統計学実践ワークブックのp.253を参照せよ)

[2] 解答

$\boxed{ \ \mathsf{9}\ }$ : ④

元の単回帰モデルを

       \[
           Y_t = \alpha_0 + \alpha_1X_t + u_t   
       \]

とおく.問題文で与えられた$Y^*_t$にこれを代入すると,

$$
\begin{align*}
           Y^*_t &= \alpha_0 + \alpha_1X_t + u_t + \hat{\rho}(\alpha_0 + \alpha_1X_{t-1} + u_{t-1}) \\
                 &= (1-\hat{\rho})\alpha_0 + \alpha_1(X_t-\hat{\rho}X_{t-1}) + u_t -\hat{\rho}u_{t-1} \\
                 &= (1-\hat{\rho})\alpha_0 + \alpha_1X^*_t + u_t – \hat{\rho}u_{t-1}
\end{align*}
$$

これと,$Y^*_t = \beta_0 + \beta_1X^*_t + v_t$ を比較すると,

$$
\begin{align*}
           \beta_0 &= (1-\hat{\rho})\alpha_0\\
           \beta_1 &= \alpha_1 \\
           v_t     &= u_t – \hat{\rho}u_{t-1}
\end{align*}
$$

を得る.$\hat{\alpha}_0 = 87.509$,$\hat{\alpha}_1 = 0.548$であるから,これを用いて$\beta_0$,$\beta_1$の推定値$\hat{\beta}_0$,$\hat{\beta}_1$を計算すると,$\hat{\beta}_0=25.4$,$\hat{\beta}_1 = 0.55$となるので,これに一番近い選択肢を選べば良い.

【統計の森 独自評価】統計学・数学・機械学習などの参考書のレビュー 〜自然科学の統計学〜

当記事では「自然科学の統計学(東京大学出版)」のレビューに関して取りまとめを行いました。

・参考書籍一覧
https://www.hello-statisticians.com/uncategorized/reference.html

レビューまとめ

Bestレビュー

「統計の森」運営レビュー

全体評価: $4.5$
オムニバス形式で様々なトピックに関して取り扱われた一冊。章ごとに著者が異なるオムニバス形式であるので、$1$章から読み進める必要はない。$11$章の「乱数の性質」では「線形合同法」、「M系列」、「ボックス・ミュラー法」などに関してまとめられておりわかりやすい。
また、基礎統計学Ⅰ(赤本)のシリーズ本だが、それほど連動していないので同一シリーズだと考えて読むと良くない。転置行列の$A^{\mathrm{T}}$が$A’$のように表されているなど、近年の書籍とは表記法が異なる点があるので注意が必要である。
「数理統計学」のトピックがそれほどあるわけではないので、「数理統計学」を学ぶ場合は「現代数理統計学」などの「数理統計学」の本を確認すると良い。全体を通してそれほどわかりやすいわけではないが、類書が少ないので、評価を高めにつけた。

読み進める際の参考事項まとめ

Ch.8 「不定積分」の演習問題の解答例 〜統計学のための数学入門30講(朝倉書店)〜

当記事は「統計学のための数学入門$30$講(朝倉書店)」の読解サポートにあたってChapter.$8$の「不定積分」の章末問題の解答の作成を行いました。
基本的には書籍の購入者向けの解説なので、まだ入手されていない方は購入の上ご確認ください。また、解説はあくまでサイト運営者が独自に作成したものであり、書籍の公式ページではないことにご注意ください。

・書籍解答まとめ
https://www.hello-statisticians.com/answer_textbook_math#math_stat

本章のまとめ

演習問題解答

問題$8.1$

・$[1]$
下記のように不定積分を計算することができる。
$$
\large
\begin{align}
\int (\sqrt{x} + 2x^3) dx &= \int (x^{\frac{1}{2}} + 2x^3) dx \\
&= \frac{2}{3} x^{\frac{3}{2}} + \frac{2}{4}x^4 + C \\
&= \frac{2}{3} x\sqrt{x} + \frac{1}{2}x^4 + C
\end{align}
$$

・$[2]$
下記のように不定積分を計算することができる。
$$
\large
\begin{align}
\int e^{4x} dx &= \frac{1}{4} \int 4e^{4x} dx \\
&= \frac{1}{4} \int (e^{4x})’ dx \\
&= \frac{1}{4} e^{4x} + C
\end{align}
$$

問題$8.2$

・$[1]$
部分積分法を用いることで下記のように不定積分を計算することができる。
$$
\large
\begin{align}
\int x \log{x} dx &= \frac{1}{2}x^{2} \log{x} – \frac{1}{2} \int x^{2} \cdot \frac{1}{x} dx \\
&= \frac{1}{2}x^{2} \log{x} – \frac{1}{2} \int x dx \\
&= \frac{1}{2}x^{2} \log{x} – \frac{1}{4}x^2 + C
\end{align}
$$

・$[2]$
$((x^2+1)^{6})’=12x(x^2+1)$であることを用いて、下記のように不定積分を計算することができる。
$$
\large
\begin{align}
\int x(x^2+1)^{5} dx &= \frac{1}{12} \int 12x(x^2+1)^{5} dx \\
&= \frac{1}{12} \int ((x^2+1)^{6})’ dx \\
&= \frac{1}{12}(x^2+1)^{6} + C
\end{align}
$$

【統計の森ちゃんねる】演習で理解する統計学シリーズのまと【統計学標準演習100選】

統計の森では、YouTubeチャンネル「統計の森ちゃんねる」を運営しています。

統計の森ちゃんねるでは、当サイトの「統計学 標準演習100選」の問題を解説する動画シリーズ「演習で理解する統計学シリーズ」を投稿しています。

演習は各項目で基礎的な内容から始まって徐々に難易度は上がっていきますが、統計学における主要なトピックの導出の流れが追えるような構成になっています。この演習問題について、文章だけでは伝わりにくいポイントを動画で解説していきます。

最尤法とGLM(Generalized Linear Model)

演習問題の「最尤法とGLM(Generalized Linear Model)」の解説。

#01 【演習で理解する統計学 # 01】最尤法とGLM 〜基本的な最尤法の流れ(前半)〜

#02 【演習で理解する統計学 # 02】最尤法とGLM 〜基本的な最尤法の流れ(後半)〜

#03 【演習で理解する統計学 # 03】最尤法とGLM 〜指数型分布族の定義式と具体的な確率分布との対応(前半)〜

#04 【演習で理解する統計学 # 04】最尤法とGLM 〜指数型分布族の定義式と具体的な確率分布との対応(後半)〜

広義積分(improper integral)の収束判定と発散

期待値や分散のように確率分布の定義域における積分を考える場合、$\infty$が積分区間に出てくる場合があります。この取り扱いを数学的に考えるにあたっては、広義積分(improper integral)の定義を抑えておくと良いので、当記事では広義積分の収束判定と発散について取りまとめました。
作成にあたっては「チャート式シリーズ 大学教養 微分積分」の第$4$章「積分($1$変数)」を主に参考にしました。

・数学まとめ
https://www.hello-statisticians.com/math_basic

広義積分の収束判定と発散

半区間$[a,b)$上の連続関数$f(x)$に関して下記の極限値が存在すると仮定する。
$$
\large
\begin{align}
\lim_{t \to b-0} \int_{a}^{b} f(x) dx = \lim_{\varepsilon \to +0} \int_{a}^{b-\varepsilon} f(x) dx
\end{align}
$$

このとき広義積分$\int_{a}^{b} f(x) dx$が収束するという。

広義積分の収束判定と発散の例の確認

以下、「チャート式シリーズ 大学教養 微分積分」の例題の確認を行う。

基本例題$081$

・$[1]$
$$
\large
\begin{align}
\int_{a}^{\infty} x^{k} dx &= -\frac{a^{k+1}}{k+1}, \quad k<-1 \\
&= \infty, \qquad k \geq -1
\end{align}
$$

以下、上記を示す。

i) $k \neq -1$のとき
広義積分$\displaystyle \int_{a}^{\infty} x^{k} dx$は下記のように考えることができる。
$$
\large
\begin{align}
\int_{a}^{\infty} x^{k} dx &= \lim_{t \to \infty} \int_{a}^{t} x^{k} dx \\
&= \lim_{t \to \infty} \left[ \frac{1}{k+1}x^{k+1} \right]_{a}^{t} \\
&= \lim_{t \to \infty} \frac{1}{k+1} \left[ t^{k+1} – a^{k+1} \right]
\end{align}
$$

上記は$k<-1$のとき$\displaystyle -\frac{a^{k+1}}{k+1}$に収束し、$k>-1$のとき$\infty$に発散する。

ⅱ) $k=-1$のとき
広義積分$\displaystyle \int_{a}^{\infty} x^{k} dx$は下記のように考えることができる。
$$
\large
\begin{align}
\int_{a}^{\infty} x^{k} dx &= \lim_{t \to \infty} \int_{a}^{t} x^{-1} dx \\
&= \lim_{t \to \infty} \left[ \log{x} \right]_{a}^{t} \\
&= \lim_{t \to \infty} (\log{t} – \log{a}) = \infty
\end{align}
$$

i)、ⅱ)より、大元の式は成立する。

・$[2]$
$$
\large
\begin{align}
\int_{-\infty}^{a} e^{kx} dx &= \frac{1}{k}e^{ka}, \quad k>0 \\
&= \infty, \qquad k=0 \\
&= -\infty, \qquad k<0
\end{align}
$$

以下、上記を示す。

i) $k \neq 0$のとき
広義積分$\displaystyle \int_{-\infty}^{a} e^{kx} dx$は下記のように考えることができる。
$$
\large
\begin{align}
\int_{-\infty}^{a} e^{kx} dx &= \lim_{s \to \infty} \int_{s}^{a} e^{kx} dx \\
&= \lim_{s \to \infty} \left[ \frac{1}{k} e^{kx} \right]_{s}^{a} \\
&= \lim_{s \to \infty} \frac{e^{ka} – e^{ks}}{k}
\end{align}
$$

上記は$k>0$のとき$\displaystyle \frac{e^{ka}}{k}$に収束し、$k<0$のとき$-\infty$に発散する。

ⅱ) $k=0$のとき
広義積分$\displaystyle \int_{-\infty}^{a} e^{kx} dx$は下記のように考えることができる。
$$
\large
\begin{align}
\int_{-\infty}^{a} e^{kx} dx$ &= \lim_{s \to -\infty} \int_{s}^{a} e^{0} dx \\
&= \lim_{s \to -\infty} \left[ x \right]_{s}^{a} \\
&= \lim_{s \to -\infty} (a-s) = \infty
\end{align}
$$

i)、ⅱ)より、大元の式は成立する。

基本例題$083$

【桃太郎電鉄検証】サイコロの数が5個と10個の目の和で勝負した際に5個の側が勝つ確率

上記で複数サイコロの確率の計算に関して取り扱いましたが、結果を応用することでサイコロの数が異なるサイコロ勝負の確率を計算することができます。具体的には桃太郎電鉄でサイコロ$5$個と$10$個のサイコロ勝負があるので、当記事では$5$個の側が勝利する確率に関して以下計算を行います。

・ゲーム × 統計 まとめ
https://www.hello-statisticians.com/game_stat

基本的な考え方

$1$個と$2$個の場合

$1$個のサイコロの出目を確率変数$X$、$2$個のサイコロの出目の和を確率変数$Y$でおきます。このときそれぞれの確率分布は確率関数$p(x)$と$p(y)$を用いて下記のように表すことができます。

$X$$1$$2$$3$$4$$5$$6$
$p(x)$$\displaystyle \frac{1}{6}$$\displaystyle \frac{1}{6}$$\displaystyle \frac{1}{6}$$\displaystyle \frac{1}{6}$$\displaystyle \frac{1}{6}$$\displaystyle \frac{1}{6}$
$Y$$2$$3$$4$$5$$6$$7$$8$$9$$10$$11$$12$
$p(y)$$\displaystyle \frac{1}{6^2}$$\displaystyle \frac{2}{6^2}$$\displaystyle \frac{3}{6^2}$$\displaystyle \frac{4}{6^2}$$\displaystyle \frac{5}{6^2}$$\displaystyle \frac{6}{6^2}$$\displaystyle \frac{5}{6^2}$$\displaystyle \frac{4}{6^2}$$\displaystyle \frac{3}{6^2}$$\displaystyle \frac{2}{6^2}$$\displaystyle \frac{1}{6^2}$

このとき$X>Y$となる確率$P(X>Y)$は下記のように計算できます。
$$
\begin{align}
& P(X>Y) = P(X=3, Y=2) + P(X=4, Y \leq 3) + P(X=5, Y \leq 4) + P(X=6, Y \leq 5) \\
&= P(X=3)P(Y=2) + P(X=4)P(Y \leq 3) + P(X=5)P(Y \leq 4) + P(X=6)P(Y \leq 5) \\
&= \frac{1}{6}(P(Y=2) + P(Y \leq 3) + P(Y \leq 4) + P(Y \leq 5)) \\
&= \frac{1}{6} \left( \frac{1}{6^2} + \frac{2}{6^2} + \frac{3}{6^2} + \frac{4}{6^2} \right) \\
&= \frac{1}{6} \times \frac{20}{6^2} = \frac{5}{54} = 0.09259…
\end{align}
$$

上記より$P(X>Y)$は約$9.3$%ほどの確率であることが確認できます。

確率計算にあたっての考え方

前項で確認を行なったように、ここでの確率計算にあたってはそれぞれの出目を確率変数$X,Y$で表し、確率関数$p(x), p(y)$を元に確率分布を考えるとわかりやすいです。$X$のそれぞれの値に対し、$Y$が下回る確率を考えることで、同時分布の分解の要領で計算を行うことができます。

$n$個 vs $2n$個

計算プログラム

前節の内容を元に下記のようにプログラムを作成することができます。

n1, n2 = 1, 2
m = 6

def extend_dist(dist_dict, m):
    new_dist_dict = {}
    for i in range(dist_dict.keys()[0]+1,dist_dict.keys()[-1]+1+m):
        new_dist_dict[i] = 0
    for key in dist_dict.keys():
        for i in range(m):
            new_dist_dict[key+i+1] += dist_dict[key]/float(m)
    return new_dist_dict

prob_init = {}
for i in range(m):
    prob_init[i+1] = 1/float(m)

prob1, prob2 = prob_init, prob_init
for i in range(n1-1):
    prob1 = extend_dist(prob1, m)

for i in range(n2-1):
    prob2 = extend_dist(prob2, m)

prob = 0.

for i in range(n2+1,n1*6+1):
    for j in range(n2,i):
        prob += prob1[i]*prob2[j]

print("Probability: {:.3f}".format(prob))

・実行結果

Probability: 0.093

上記のプログラムでは下記で作成したプログラムを用いて複数サイコロの出目の和に関する確率分布の計算を行ないました。

$n$個 vs $2n$個

前項のプログラムを$n1=3, n2=6$と$n1=5, n2=10$で実行すると下記が得られます。

・$n1=3, n2=6$

Probability: 0.015

・$n1=5, n2=10$

Probability: 0.0028

上記より、サイコロ$5$個の出目の和がサイコロ$10$個の出目の和を上回る確率は$0.28$%であることが確認できます。

広義積分(improper integral)の定義と極限値の計算

期待値や分散のように確率分布の定義域における積分を考える場合、$\infty$が積分区間に出てくる場合があります。この取り扱いを数学的に考えるにあたっては、広義積分(improper integral)の定義を抑えておくと良いので、当記事では広義積分について取りまとめました。
作成にあたっては「チャート式シリーズ 大学教養 微分積分」の第$4$章「積分($1$変数)」を主に参考にしました。

・数学まとめ
https://www.hello-statisticians.com/math_basic

広義積分まとめ

半区間$(a,b]$上の連続関数$f(x)$の取り扱い

半区間$(a,b]$上の連続関数$f(x)$に関して下記の極限値が存在すると仮定する。
$$
\large
\begin{align}
\lim_{t \to a+0} \int_{t}^{b} f(x) dx = \lim_{\varepsilon \to +0} \int_{a+\varepsilon}^{b} f(x) dx
\end{align}
$$

このとき広義積分$\displaystyle \int_{a}^{b} f(x) dx$は収束し、下記のように表せる。
$$
\large
\begin{align}
\int_{a}^{b} f(x) dx = \lim_{t \to a+0} \int_{t}^{b} f(x) dx = \lim_{\varepsilon \to +0} \int_{a+\varepsilon}^{b} f(x) dx
\end{align}
$$

区間$(\infty,b]$上の連続関数$f(x)$の取り扱い

区間$(\infty,b]$上の連続関数$f(x)$に関して下記の極限値が存在すると仮定する。
$$
\large
\begin{align}
\lim_{s \to -\infty} \int_{s}^{b} f(x) dx
\end{align}
$$

このとき広義積分$\displaystyle \int_{\infty}^{b} f(x) dx$は収束し、下記のように表せる。
$$
\large
\begin{align}
\int_{\infty}^{b} f(x) dx = \lim_{s \to -\infty} \int_{s}^{b} f(x) dx
\end{align}
$$

広義積分の計算

以下、「チャート式シリーズ 大学教養 微分積分」の例題の確認を行う。

基本例題$079$

・$[1]$
下記のように値を求められる。
$$
\large
\begin{align}
\int_{1}^{2} \frac{1}{\sqrt{x-1}} dx &= \lim_{\varepsilon \to +0} \int_{1+\varepsilon}^{2} \frac{1}{\sqrt{x-1}} dx \\
&= \lim_{\varepsilon \to +0} \left[ 2 \sqrt{x-1} \right]_{1+\varepsilon}^{2} \\
&= \lim_{\varepsilon \to +0} 2(\sqrt{2-1}-\sqrt{\cancel{1}+\varepsilon-\cancel{1}}) \\
&= \lim_{\varepsilon \to +0} 2(1-\sqrt{\varepsilon}) \\
&= 2(1-0) = 2
\end{align}
$$

・$[2]$
下記のように値を求められる。
$$
\large
\begin{align}
\int_{-\infty}^{-1} \frac{1}{x^2} dx &= \lim_{s \to -\infty} \int_{s}^{-1} \frac{1}{x^2} dx \\
&= \lim_{s \to -\infty} \left[ -\frac{1}{x} \right]_{s}^{-1} \\
&= \lim_{s \to -\infty} \left[ 1 + \frac{1}{s} \right] \\
&= 1+0 \\
&= 1
\end{align}
$$

・$[3]$
下記のように値を求めることができる。
$$
\large
\begin{align}
\int_{0}^{1} \frac{\log{x}}{x} dx &= \lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{\log{x}}{x} dx \\
&= \lim_{\varepsilon \to +0} \left[ \frac{1}{2}(\log{x})^{2} \right]_{\varepsilon}^{1} \\
&= \lim_{\varepsilon \to +0} \frac{1}{2} \left[ 0 – (\log{\epsilon})^2 \right] = -\infty
\end{align}
$$

基本例題$080$

下記のように広義積分の値を求めることができる。
$$
\large
\begin{align}
\int_{1}^{3} (1-x)^{-2} dx &= \lim_{\varepsilon \to +0} \int_{1+\varepsilon}^{3} (1-x)^{-2} dx \\
&= \lim_{\varepsilon \to +0} \left[ (1-x)^{-1} \right]_{1+\varepsilon}^{3} \\
&= \lim_{\varepsilon \to +0} \left[ (1-3)^{-1} – (\cancel{1}-(\cancel{1}+\varepsilon))^{-1} \right] \\
&= \lim_{\varepsilon \to +0} \left[ -2^{-1} + \varepsilon^{-1} \right] \\
&= \lim_{\varepsilon \to +0} \left[ -\frac{1}{2} + \frac{1}{\varepsilon} \right] \\
&= \infty
\end{align}
$$

基本例題$082$

下記の式変形により、広義積分の値が得られる。
$$
\large
\begin{align}
\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx &= \lim_{s \to -\infty} \int_{s}^{0} \frac{1}{1+x^2} dx + \lim_{t \to \infty} \int_{0}^{t} \frac{1}{1+x^2} dx \\
&= \lim_{t \to \infty} 2 \int_{0}^{t} \frac{1}{1+x^2} dx \\
&= \lim_{u \to \frac{\pi}{2}} 2 \int_{0}^{u} \cos^{2}{\theta} \cdot \frac{1}{\cos^{2}{\theta}} d \theta \\
&= \lim_{u \to \frac{\pi}{2}} 2 \left[ \theta \right]_{0}^{u} \\
&= \lim_{u \to \frac{\pi}{2}} 2u \\
&= \pi
\end{align}
$$

途中計算では$x=\tan{\theta}$とおいて置換積分を行なった。