線形代数の枠組みで$n$次正方行列の行列式(determinant)を取り扱うにあたっては置換(permutation)という概念を抑えておく必要があります。当記事では互換(transpositions)と巡回置換(cy…
Hello Statisticians!
線形代数の枠組みで$n$次正方行列の行列式(determinant)を取り扱うにあたっては置換(permutation)という概念を抑えておく必要があります。当記事では互換(transpositions)と巡回置換(cy…
線形代数の枠組みで$n$次正方行列の行列式(determinant)を取り扱うにあたっては置換(permutation)という概念を抑えておく必要があります。当記事では置換(permutation)の符号や符号に関連する…
線形代数の枠組みで$n$次正方行列の行列式(determinant)を取り扱うにあたっては置換(permutation)という概念を抑えておく必要があります。当記事では置換(permutation)の指数法則や単位置換、…
Transformerは汎用的に用いることのできる強力なDeepLearningである一方、入力系列のトークンが多くなると計算量も増大します。当記事ではTransformerの各Attention処理でのSoftmax計…
DeepLearningの軽量化・高速化にあたって、畳み込み処理の分解などが行われることが多いです。当記事ではMobileNetsにおける点単位畳み込み(Pointwise Convolution)やチャネル別畳み込み(…
畳み込み演算を用いて画像のセグメンテーションや生成を行う際に何らかの計算に基づいてアップサンプリング(upsampling)処理が行われます。当記事ではアップサンプリングの際に用いられるdeconvolutionを畳み込…
DeepLearningに関連する計算にあたってソフトマックス関数(softmax function)はよく出てくる一方で、出力値が過剰になる場合もあり得ます。当記事ではこのような際に値の調整に用いられる温度スケーリング…
順序尺度を目的変数に持つ順序回帰(ordinal regression)は「単なる分類」や「連続値の回帰」と同様な取り扱いをするかどうかを注意して検討する必要があります。当記事ではDeepLearningを用いた順序回帰…
バッチ正規化(batch normalization)のような正規化処理はMLP(Multi Layer Perceptron)に限らず広く用いられます。当記事ではCNN(Convolutional Neural Net…
DeepLearningなどの機械学習では学習時に用いたサンプルへの過学習(overfitting)が課題になります。当記事ではDeepLearningで過学習を防ぐにあたって導入される正則化(regularizatio…