ロピタルの定理(l’Hopital’s rule)は極限の不定形$\displaystyle \frac{0}{0}$に対して微分法を用いることで導出を行う手法です。当記事ではロピタルの定理の概要…
Hello Statisticians!
ロピタルの定理(l’Hopital’s rule)は極限の不定形$\displaystyle \frac{0}{0}$に対して微分法を用いることで導出を行う手法です。当記事ではロピタルの定理の概要…
数式だけの解説ではわかりにくい場合もあると思われるので、統計学の手法や関連する概念をPythonのプログラミングで表現します。当記事ではポアソン分布、正規分布、指数分布などの確率分布の確率密度関数とパラメータの対応やグラ…
微分可能性を考えるにあたって、$C^{n}$級・$C^{\infty}$級関数のような表記がよく用いられます。当記事では「チャート式シリーズ 大学教養 微分積分」の演習を元に$C^{n}$級・$C^{\infty}$級関…
数式だけの解説ではわかりにくい場合もあると思われるので、統計学の手法や関連する概念をPythonのプログラミングで表現します。当記事では記述統計を取扱う際に出てくる平均、分散、共分散、相関係数、共分散行列などの手法に関し…
ベクトルの外積(outer product)は二つのベクトル$\mathbf{v},\mathbf{w}$に直交し、長さが$\mathbf{v},\mathbf{w}$が作る平行四辺形の面積に等しいベクトルを計算する考え…
ベクトル空間(Vector space)はベクトルの集合を元に定義される概念です。ベクトル空間やベクトル空間に関連する部分空間は抽象的なので、当記事ではベクトル空間・部分空間の定義に加えて「チャート式シリーズ 大学教養 …
収束半径(radius of convergence)は多項式の形式で表されるべき級数に対して、級数が収束する際の$|x|$の取りうる値の上限を表す概念です。当記事では収束半径の定義を確認したのちに、具体的な理解ができる…
三角関数の$n$乗の積分は部分積分法を用いて計算することができますが、この一連の手順はイングランドの数学者のジョン・ウォリス(John Wallis)によって導入されたことからウォリス積分(Wallis integral…
双曲線関数(hyperbolic function)の$\sinh, \cosh, \tanh$はそれぞれ指数関数の$e^{x}$や$e^{-x}$を用いて定義されます。双曲線関数は双曲線を媒介変数表示する際に有用である…
三角関数$\sin, \cos, \tan$の逆関数の$\sin^{-1}, \cos^{-1}, \tan^{-1}$は積分の結果の表記などでよく用いられるので、結果の解釈がしやすいように値に関して具体的に抑えておくと…