歪度(skewness)や尖度(kurtosis)はそれぞれ$3$次と$4$次のモーメントを元に計算を行いますが、具体的な値が計算される場合が少ないようです。そこで当記事では正規分布のモーメント母関数を元にそれぞれの値を…
Hello Statisticians!
統計に関する用語、また、それと合わせて各種公式を解説します
歪度(skewness)や尖度(kurtosis)はそれぞれ$3$次と$4$次のモーメントを元に計算を行いますが、具体的な値が計算される場合が少ないようです。そこで当記事では正規分布のモーメント母関数を元にそれぞれの値を…
確率分布と特性関数には$1$対$1$の対応があり、確率密度関数からモーメント母関数の計算を行うなどと同様に母関数から確率密度関数の復元を行うことも可能です。当記事では母関数から確率密度関数を計算する式である反転公式の概要…
統計的仮説検定における有意水準$\alpha$と検出力$1-\beta$はそれぞれ第$1$種の過誤と第$2$種の過誤の度合いを調整する指標であり、これらの値に基づいてサンプルサイズの設計を行うことが可能です。当記事では有…
$0^{\circ}$〜$360^{\circ}$や$0$〜$2 \pi$のように表される角度は周期を持ちますが、平均などを計算する際に周期を考慮する必要が生じます。当記事では角度の平均の計算にあたって三角関数を導入した…
分類を行う際の考え方の$1$つに線形識別関数(linear discriminant function)を用いる方法がありますが、法線ベクトルに着目することでシンプルに表すことができます。当記事では法線ベクトルを元に線形…
当記事ではガンマ分布に基づくガンマ乱数の生成とその応用にあたって$\chi^2$分布に基づく乱数の生成を行います。ガンマ分布の形状パラメータと尺度パラメータに特定の値を定めることで、指数分布や$\chi^2$分布が導出で…
当記事では離散型確率分布に基づく乱数生成の手法である別名(alias)法に関して手順とPythonプログラムに関して取りまとめを行いました。途中で用いる$2$点分布の取り扱いなど、少々手順が複雑なのでなるべく直感的に理解…
カーネル法(Kernel methods)の応用例の一つにガウス過程回帰(Gaussian Process Regression)があるので、当記事ではガウス過程回帰の導出の流れとPythonプログラムを用いたガウス過程…
カーネル法(Kernel methods)の応用例の一つにガウス過程(Gaussian Process)やガウス過程回帰(Gaussian Process Regression)があるので、当記事ではガウス過程の導出の流…
定義域が実数全体かつ左右対称の確率分布の確率密度関数には基本的には変曲点が存在します。「正規分布のパラメータと確率密度関数の形状の変化」では正規分布の変曲点が分散を表す$\sigma^2$を用いて表しましたが、当記事では…