行列の各固有値(eigen value)に対応する固有ベクトル(eigen vector)を用いることで行列の対角化(diagonalization)を行うことが可能です。当記事では交代行列の対角化(diagonaliz…
Hello Statisticians!
行列の各固有値(eigen value)に対応する固有ベクトル(eigen vector)を用いることで行列の対角化(diagonalization)を行うことが可能です。当記事では交代行列の対角化(diagonaliz…
線形代数を学ぶにあたって行列式(determinants)は固有値・固有ベクトルの導出にあたって出てくる固有多項式・固有方程式に出てくるなど、重要な概念です。当記事では行列式の計算によく用いられる行多重線形性と行交代性の…
行列の各固有値(eigen value)に対応する固有ベクトル(eigen vector)を用いることで行列の対角化(diagonalization)を行うことが可能です。当記事では直交行列を用いた実対称行列の対角化につ…
ハウスホルダー行列(Householder Matrix)は固有値解析にあたって行列の三重対角化を行う際などに用いられます。当記事ではハウスホルダー行列(Householder Matrix)の定義と成立する定理の導出…
$n$個の変数についての$2$次の単項式$x_i, x_j$の実数係数の$1$次結合の式を$2$次形式といいます。当記事では二次形式(quadratic form)と対称行列(symmetric matrix)の対応につ…
回転行列(Rotation Matrix)やReflection Matrixはシンプルに定義できる行列である一方でベクトルの回転や指定したベクトルの反対側への移動など、図形に有用な変換が可能です。当記事では$2$Dにお…
線形代数の枠組みで$n$次正方行列の行列式(determinant)を取り扱うにあたっては置換(permutation)という概念を抑えておく必要があります。当記事では互換(transpositions)と巡回置換(cy…
固有多項式(characteristic polynomial)は固有値を計算する際の固有方程式に用いられる多項式です。当記事ではブロック対角行列(block-diagonal matrix)の行列式の計算と、固有多項式…
行列$A$を代入すると零行列$O$になる多項式の中で「次数が最小」かつ「最高次の係数が$1$」である多項式を最小多項式(minimal polynomial)といいます。当記事では最小多項式の定義とチャート式線形代数の演…
固有多項式(characteristic polynomial)は固有値を計算する際の固有方程式に用いられる多項式です。当記事では固有多項式の定義・活用と、三角行列(triangular matrix)における固有多項式…