$t$分布は分散未知の場合の母平均の区間推定や検定などで主に用いられる分布ですが、数理統計学では$t$確率密度関数の導出や$t$分布の自由度$\nu$と正規分布、コーシー分布の対応について学びます。当記事ではこれらの導出…
Hello Statisticians!
$t$分布は分散未知の場合の母平均の区間推定や検定などで主に用いられる分布ですが、数理統計学では$t$確率密度関数の導出や$t$分布の自由度$\nu$と正規分布、コーシー分布の対応について学びます。当記事ではこれらの導出…
逆関数法は累積分布関数が値域$(0,1)$かつ単調増加の関数であることに基づいて、区間$(0,1)$で生成する一様乱数を累積分布関数と対応させることで乱数生成を行う手法です。当記事では、ワイブル分布、ロジスティック分布、…
確率密度関数・確率エレメント・定積分における確率変数の変換にあたっては手順に沿って計算を行えば十分である一方で、公式がわからなくなりがちです。そこで当記事では「ボックス・ミュラー法」の導出を元に難しい点の確認を行なった後…
はじめに ガウス分布の最尤推定では、共分散行列の最尤解を求めるにあたって$\displaystyle \frac{\partial \ln|A|}{\partial A}$を計算する必要があります。本記事では,これが $…
当記事では一様乱数から正規乱数の生成を行うボックス・ミュラー法(Box-Muller’s method)の原理に関して取り扱いました。ボックス・ミュラー法はガウス積分を行う際と同様の考え方を用いるので、ガウス…
カーネル法(Kernel methods)の理解にあたって、計算処理の概要が把握しにくいように思われたので、Pythonプログラムの作成を通して図などの再現を行います。当記事では「パターン認識と機械学習」の下巻の$6.2…
当記事ではLU分解を用いた「$1$次連立方程式の解法」と「逆行列」の導出の仕組みに関して詳しく確認し、確認した式を元にPythonでプログラムを作成します。特に逆行列は行列を扱う上で様々なところで用いられるので、仕組みの…
当記事ではLU分解(LU decomposition)の原理の理解とPythonを用いた実装に関して取り扱います。LU分解は方程式を順に解く手法であり、手計算を行うと大変なのでPythonなどで計算を行うとスムーズですが…
QR法と逆反復法を組み合わせることで固有値・固有ベクトルの近似計算を行うことができます。QR法は別記事で取り扱ったので、当記事ではべき乗法や逆反復法に関して取りまとめ、QR法で得られた固有値を元に逆反復法を用いて固有ベク…
当記事ではQR分解(QR decomposition)に基づくQR法を用いた固有値の近似計算の概要とPythonを用いた実装に関して取り扱います。QR分解に関してはいくつか手法がありますが、当記事ではグラム・シュミットの…