表現行列④:基底変換と線形写像の表現行列(representation matrix)

ベクトル空間$V$からベクトル空間$W$への線形写像$f:V \longrightarrow W$について、それぞれのベクトル空間$V, W$の基底に基づく演算の際に表現行列(representation matrix)が用いられます。当記事では基底変換と線形写像の表現行列について取り扱いました。
作成にあたっては「チャート式シリーズ 大学教養 線形代数」の第$6$章「線形写像」を主に参考にしました。

・数学まとめ
https://www.hello-statisticians.com/math_basic

基底変換と線形写像の表現行列

基底の変換行列

$n$次元ベクトル空間$V$の$2$つの基底を下記のように定義する。
$$
\large
\begin{align}
\left\{ \mathbf{v}_{1}, \, \cdots , \, \mathbf{v}_{n} \right\} \quad (1) \\
\left\{ \mathbf{v}_{1}’, \, \cdots , \, \mathbf{v}_{n}’ \right\} \quad (2)
\end{align}
$$

このとき$(1)$と$(2)$に関する$1$次変換の表現行列を$P$とおくと、下記が成立する。
$$
\large
\begin{align}
\left( \begin{array}{ccc} \mathbf{v}_{1}’ & \cdots & \mathbf{v}_{n}’ \end{array} \right) = \left( \begin{array}{ccc} \mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \end{array} \right) P
\end{align}
$$

上記の行列$P$を基底$(1)$から基底$(2)$への変換行列という。基底の変換行列は正則行列であるので、上記の行列$P$は$n$次正則行列である。基底の変換行列は下記でも取り扱った。
https://www.hello-statisticians.com/math_basic/change-of-basis_matrix1

表現行列

$$
\large
\begin{align}
\left( \begin{array}{ccc} f(\mathbf{v}_{1}) & \cdots & f(\mathbf{v}_{n}) \end{array} \right) = \left( \begin{array}{ccc} \mathbf{w}_{1} & \cdots & \mathbf{w}_{m} \end{array} \right) \left( \begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array} \right)
\end{align}
$$

線形写像$f:V \longrightarrow W$の表現行列$A$は上記を元に下記のように定義される。
$$
\large
\begin{align}
A = \left( \begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array} \right)
\end{align}
$$

詳しくは下記で取り扱った。
https://www.hello-statisticians.com/math_basic/representation_matrix1.html

計算例

以下、「チャート式シリーズ 大学教養 線形代数」の例題の確認を行う。

基本例題$126$

・線形写像$f:V \longrightarrow W$
$$
\large
\begin{align}
f(\mathbf{v}_{1}) &= \mathbf{w}_{1} + 5 \mathbf{w}_{2} \quad f(\mathbf{v}_{2}) = \mathbf{w}_{1} + \mathbf{w}_{2} \quad f(\mathbf{v}_{2}) = 3 \mathbf{w}_{1} + 7 \mathbf{w}_{2} \\
f(\mathbf{v}_{4}) &= 2 \mathbf{w}_{1} + 6 \mathbf{w}_{2} \quad f(\mathbf{v}_{5}) = \mathbf{w}_{1} + \mathbf{w}_{2}
\end{align}
$$

上記は下記のように表すことができる。
$$
\large
\begin{align}
\left( \begin{array}{ccccc} f(\mathbf{v}_{1}) & f(\mathbf{v}_{2}) & f(\mathbf{v}_{3}) & f(\mathbf{v}_{4}) & f(\mathbf{v}_{5}) \end{array} \right) = \left( \begin{array}{cc} \mathbf{w}_{1} & \mathbf{w}_{2} \end{array} \right) \left( \begin{array}{ccccc} 1 & 1 & 3 & 2 & 1 \\ 5 & 1 & 7 & 6 & 1 \end{array} \right) \quad (1)
\end{align}
$$

・基底$\{ \mathbf{w}_{1}, \mathbf{w}_{2} \}$の変換
$$
\large
\begin{align}
\mathbf{w}_{1}’ &= \mathbf{w}_{1} + 5 \mathbf{w}_{2} \\
\mathbf{w}_{2}’ &= \mathbf{w}_{1} + \mathbf{w}_{2}
\end{align}
$$

上記は下記のように表すことができる。
$$
\large
\begin{align}
\left( \begin{array}{cc} \mathbf{w}_{1}’ & \mathbf{w}_{2}’ \end{array} \right) = \left( \begin{array}{cc} \mathbf{w}_{1} & \mathbf{w}_{2} \end{array} \right) \left( \begin{array}{cc} 1 & 1 \\ 5 & 1 \end{array} \right) \quad (2)
\end{align}
$$

・基底$\{ \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5} \}$の変換
$$
\large
\begin{align}
\mathbf{v}_{1}’ &= \mathbf{v}_{2} \quad \mathbf{v}_{2}’ = \mathbf{v}_{3} \quad \mathbf{v}_{3}’ = \mathbf{v}_{1} \\
\mathbf{v}_{4}’ &= \mathbf{v}_{5} \quad \mathbf{v}_{5}’ = \mathbf{v}_{4}
\end{align}
$$

上記は下記のように表すことができる。
$$
\large
\begin{align}
& \left( \begin{array}{ccccc} \mathbf{v}_{1}’ & \mathbf{v}_{2}’ & \mathbf{v}_{3}’ & \mathbf{v}_{4}’ & \mathbf{v}_{5}’ \end{array} \right) \\
&= \left( \begin{array}{ccccc} \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4} & \mathbf{v}_{5} \end{array} \right) \left( \begin{array}{ccccc} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) \quad (3)
\end{align}
$$

$(1)$〜$(3)$式より下記が成立する。
$$
\large
\begin{align}
& \left( \begin{array}{ccccc} f(\mathbf{v}_{1}’) & f(\mathbf{v}_{2}’) & f(\mathbf{v}_{3}’) & f(\mathbf{v}_{4}’) & f(\mathbf{v}_{5}’) \end{array} \right) \\
&= \left( \begin{array}{ccccc} f(\mathbf{v}_{1}) & f(\mathbf{v}_{2}) & f(\mathbf{v}_{3}) & f(\mathbf{v}_{4}) & f(\mathbf{v}_{5}) \end{array} \right) \left( \begin{array}{ccccc} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) \\
&= \left( \begin{array}{cc} \mathbf{w}_{1} & \mathbf{w}_{2} \end{array} \right) \left( \begin{array}{ccccc} 1 & 1 & 3 & 2 & 1 \\ 5 & 1 & 7 & 6 & 1 \end{array} \right) \left( \begin{array}{ccccc} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) \\
&= \left( \begin{array}{cc} \mathbf{w}_{1}’ & \mathbf{w}_{2}’ \end{array} \right) \left( \begin{array}{cc} 1 & 1 \\ 5 & 1 \end{array} \right)^{-1} \left( \begin{array}{ccccc} 1 & 1 & 3 & 2 & 1 \\ 5 & 1 & 7 & 6 & 1 \end{array} \right) \left( \begin{array}{ccccc} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) \\
&= \left( \begin{array}{cc} \mathbf{w}_{1}’ & \mathbf{w}_{2}’ \end{array} \right) Q^{-1} A P
\end{align}
$$

$V$の基底$\{ \mathbf{v}_{1}’, \mathbf{v}_{2}’, \mathbf{v}_{3}’, \mathbf{v}_{4}’, \mathbf{v}_{5}’ \}$と$W$の基底$\{ \mathbf{w}_{1}’, \mathbf{w}_{2}’ \}$に関する線形写像$f$の表現行列$Q^{-1} A P$は下記のように計算できる。
$$
\large
\begin{align}
Q^{-1} A P &= \left( \begin{array}{cc} 1 & 1 \\ 5 & 1 \end{array} \right)^{-1} \left( \begin{array}{ccccc} 1 & 1 & 3 & 2 & 1 \\ 5 & 1 & 7 & 6 & 1 \end{array} \right) \left( \begin{array}{ccccc} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) \\
&= -\frac{1}{4} \left( \begin{array}{cc} 1 & -1 \\ -5 & 1 \end{array} \right) \left( \begin{array}{ccccc} 1 & 1 & 3 & 2 & 1 \\ 5 & 1 & 7 & 6 & 1 \end{array} \right) \left( \begin{array}{ccccc} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right) \\
&= -\frac{1}{4} \left( \begin{array}{cc} 1 & -1 \\ -5 & 1 \end{array} \right) \left( \begin{array}{ccccc} 1 & 3 & 1 & 1 & 2 \\ 1 & 7 & 5 & 1 & 6 \end{array} \right) \\
&= -\frac{1}{4} \left( \begin{array}{cc} 0 & -4 & -4 & 0 & -4 \\ -4 & -8 & 0 & -4 & -4 \end{array} \right) \\
&= \left( \begin{array}{cc} 0 & 1 & 1 & 0 & 1 \\ 1 & 2 & 0 & 1 & 1 \end{array} \right)
\end{align}
$$

基本例題$127$

重要例題$065$

重要例題$066$

重要例題$067$