共役勾配法などにおける行列にヘッセ行列(Hessian Matrix)を用いる場合、ニューラルネットワークのようにパラメータが多い場合はヘッセ行列の要素が多いことで計算が難しくなります。このような際にHessian-fr…
Hello Statisticians!
統計に関する用語、また、それと合わせて各種公式を解説します
共役勾配法などにおける行列にヘッセ行列(Hessian Matrix)を用いる場合、ニューラルネットワークのようにパラメータが多い場合はヘッセ行列の要素が多いことで計算が難しくなります。このような際にHessian-fr…
KLダイバージェンス(Kullback-Leibler divergence)は確率分布の類似度を取り扱う指標である一方で、KLダイバージェンスには対称性が成立しません。そこで当記事ではKLダイバージェンスと類似の指標か…
ローゼンブロック関数(Rosenbrock function)は主に$2$変数で表される関数で、シンプルな数式である一方で等高線が複雑になることから最適化アルゴリズムのベンチマークなどに用いられます。当記事ではローゼンブ…
「尤度」と「事前確率」に関してベイズの定理を適用することでパラメータの事後分布が得られます。当記事では事前分布の選定にあたって用いられることのあるジェフリーズの事前分布(Jeffreys prior distributi…
数理統計学の検定論で出てくる検出力関数(power function)は一様最強力検定や一様最強力検定の理解にあたって重要な概念です。当記事では指数分布の両側検定の検出力関数を示し、$95$%両側検定における棄却域につい…
数理統計学の検定論で出てくる検出力関数(power function)は一様最強力検定や一様最強力検定の理解にあたって重要な概念です。当記事では不偏検定の導入の際に用いられる正規分布の母平均の両側検定を行う際の検出力関数…
ネイマン・ピアソンの補題で定義される尤度比(likelihood ratio)が標本や統計量の単調増加関数で得られるとき、単調尤度比といいます。当記事では確率密度関数が指数型分布族で表される際に、どのような場合に尤度比が…
当まとめでは統計検定$2$級の公式テキストの副教材に用いることができるように、統計学入門に関して取り扱います。当記事では「統計検定$2$級対応 統計学基礎」の$1.3.4$節「中央値・最頻値」の内容を元に、左右対称ではな…
物価のような価格を表す価格指数によく用いられるのがラスパイレス指数(Laspeyres index)です。ラスパイレス指数の定義式が難しく書かれることが多いことで難しく見えますが実際にはそれほど難しくないので、当記事では…
確率変数の和や差に関する分散の計算は二項分布、負の二項分布、超幾何分布を考える際や$2$標本の差の検定など、統計学ではよく出てきます。一方で、分散の計算にあたっては$X$と$Y$の相関を考慮する必要があり難しいので当記事…